
CS231n学习
文章平均质量分 61
刚接触深度学习的时候看的课,木有看完,些许总结
前端吗喽
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
numpy矩阵遍历的快速方法
最近有个任务要统计一个训练集的所有图片像素的个数,总共有值为0到6的六种像素值,拿到手直接想到的就是暴力循环,代码如下: label_count = [0, 0, 0, 0, 0, 0] for file in train_labels: a = np.load(r"G:\DCI_Old\test\101-1_0.npy") a.astype(np.int64) h, w = a.shape for i in range(h): for j in ra原创 2021-04-12 13:08:09 · 5023 阅读 · 0 评论 -
numpy函数记录
自己在做CS231N课程的时候,经常遇到一些函数不熟悉,每次都要反复查询,故特此记录便于日后查找nprandom.choicenumpy.random.choice(a, size=None, replace=True, p=None)从a(只要是ndarray都可以,但必须是一维的)中随机抽取数字,并组成指定大小(size)的数组replace:True表示可以取相同数字,False表示不可以取相同数字数组p:与数组a相对应,表示取数组a中每个元素的概率,默认为选取每个元素的概率相同。原创 2021-12-18 13:41:42 · 195 阅读 · 0 评论 -
tf.one_hot()的用法
官方文档解释one_hot( indices,#输入,这里是一维的 depth,# one hot dimension. on_value=None,#output 默认1 off_value=None,#output 默认0 axis=None, dtype=None, name=None)例子:indices = [0, 1, 2] #输入数据(是个向量)需要编码的索引是[0,1,2]depth = 3tf.one_hot.转载 2020-12-11 21:10:29 · 950 阅读 · 0 评论 -
CS231n作业之SVM
前面的代码不贴了,还是跟KNN那个作业一样,加载了数据集并且可视化了一下,下面贴出需要我们自己补充的:首先进入svm.ipynb,根据提示转入linear_svm.pydef svm_loss_naive(W, X, y, reg): dW = np.zeros(W.shape) # initialize the gradient as zero # compute the loss and the gradient num_classes = W.shape[原创 2020-11-04 20:32:09 · 1708 阅读 · 0 评论 -
cs231n作业之KNN分器
下面只会贴上需要自己完成的地方k_nearest_neighbor.pydef compute_distances_two_loops(self, X): num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) for i in range(num_test): for...原创 2020-10-28 14:23:21 · 428 阅读 · 0 评论 -
plt.subplot()函数使用方法
subplot(nrows, ncols, plot_number)或者写成subplot(nrows ncols plot_number)也行(中间不用逗号,前提是只能是三位数)这个函数用来表示把figure分成nrows*ncols的子图表示,nrows:子图的行数ncols:子图的列数plot_number 索引值,表示把图画在第plot_number个位置(从左下角到右上角)...原创 2020-10-25 21:05:21 · 14538 阅读 · 0 评论 -
np.flatnonzero()函数和np.random.choice()函数的使用介绍
1、np.flatnonzero()函数该函数输入一个矩阵,返回扁平化后矩阵中非零元素的位置(index),也可以返回指定元素在矩阵中的位置import numpy as nparr = np.array([2,3,1,0,2,5,2])arr1 = np.flatnonzero(arr)arr2 = np.flatnonzero(arr==2)print('arr非零元素下标:{}'.format(arr1))print('arr1值为2的元素下标:{}'.format(arr2))原创 2020-10-25 20:56:00 · 1686 阅读 · 0 评论 -
NumPy 迭代器对象 numpy.nditer 用法介绍
https://www.runoob.com/numpy/numpy-terating-over-array.html转载 2020-10-18 21:52:46 · 918 阅读 · 0 评论 -
交叉熵损失函数原理详解
交叉熵损失函数原理详解之前在代码中经常看见交叉熵损失函数(CrossEntropy Loss),只知道它是分类问题中经常使用的一种损失函数,对于其内部的原理总是模模糊糊,而且一般使用交叉熵作为损失函数时,在模型的输出层总会接一个softmax函数,至于为什么要怎么做也是不懂,所以专门花了一些时间打算从原理入手,搞懂它,故在此写一篇博客进行总结,以便以后翻阅。交叉熵简介交叉熵是信息论中的一个重要概念,主要用于度量两个概率分布间的差异性,要理解交叉熵,需要先了解下面几个概念。信息量..转载 2020-10-17 12:25:11 · 396 阅读 · 0 评论 -
Python中的Numpy
为什么要用numpy Python中提供了list容器,可以当作数组使用。但列表中的元素可以是任何对象,因此列表中保存的是对象的指针,这样一来,为了保存一个简单的列表[1,2,3]。就需要三个指针和三个整数对象。对于数值运算来说,这种结构显然不够高效。 Python虽然也提供了array模块,但其只支持一维数组,不支持多维数组(在TensorFlow里面偏向于矩阵理解),也没有各种运算函数。因而不适合数值运算。 NumPy的出现弥补了这些不足。(——摘自张若愚的《Python科...转载 2020-10-14 18:23:12 · 267 阅读 · 0 评论 -
Python图像处理库PIL中的convert函数的用法
在数字图像处理中,针对不同的图像格式有其特定的处理算法。所以,在做图像处理之前,我们需要考虑清楚自己要基于哪种格式的图像进行算法设计及其实现。本文基于这个需求,使用python中的图像处理库PIL来实现不同图像格式的转换。对于彩色图像,不管其图像格式是PNG,还是BMP,或者JPG,在PIL中,使用Image模块的open()函数打开后,返回的图像对象的模式都是“RGB”。而对于灰度图像,不管其图像格式是PNG,还是BMP,或者JPG,打开后,其模式为“L”。通过之前的博客对Image模块的介绍,对转载 2020-10-11 20:05:49 · 14933 阅读 · 0 评论 -
Python中的shape和reshape()
shapeimport numpy as npa = np.array([1,2,3,4,5,6,7,8]) #一维数组print(a.shape[0]) #值为8,因为有8个数据print(a.shape[1]) #IndexError: tuple index out of rangea = np.array([[1,2,3,4],[5,6,7,8]]) #二维数组print(a.shape[0]) #值为2,最外层矩阵有2个元素,2个元素还是矩阵。print(a.shape转载 2020-10-11 10:43:41 · 393 阅读 · 0 评论 -
CS231n课程笔记翻译:Python Numpy教程
原文如下这篇教程由Justin Johnson创作。我们将使用Python编程语言来完成本课程的所有作业。Python是一门伟大的通用编程语言,在一些常用库(numpy, scipy, matplotlib)的帮助下,它又会变成一个强大的科学计算环境。我们期望你们中大多数人对于Python语言和Numpy库比较熟悉,而对于没有Python经验的同学,这篇教程可以帮助你们快速了解Python编程环境和如何使用Python作为科学计算工具。一部分同学对于Matlab有一定经验。对于这部分同学,我转载 2020-10-10 21:28:33 · 297 阅读 · 0 评论