神经网络算法 —— Embedding(嵌入)!!

本文详细介绍了Embedding在机器学习和自然语言处理中的本质、原理,包括图像嵌入和词嵌入,并探讨了其在推荐系统和大模型中的应用,展示了Embedding如何提升模型性能和解决实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录


前言

本文将从 Embedding 的本质、Embedding的原理、Embedding的应用三个方面,详细介绍Embedding(嵌入)。


1、Embedding的本质

"Embedding" 在字面上的翻译是“嵌入”,但在机器学习和自然语言处理的上下文中,我们更倾向于将其理解为一种 “向量化” 或 “向量表示” 的技术,这有助于更准确地描述其在这些领域中的应用和作用。

(1)机器学习中的Embedding

  • 原理:将离散数据映射为连续变量,捕捉潜在关系。
  • 方法:使用神经网络中的Embedding层,训练得到数据的向量表示。
  • 作用:提升模型性能,增强泛化能力,降低计算成本。

Embedding Model

在机器学习中,Embedding 主要是指将离散的高维数据(如文字、图片、音频)映射到低纬度的连续向量空间。这个过程会生成由实数构成的向量,用于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JOYCE_Leo16

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值