文章目录
前言
本文将从 Embedding 的本质、Embedding的原理、Embedding的应用三个方面,详细介绍Embedding(嵌入)。
1、Embedding的本质
"Embedding" 在字面上的翻译是“嵌入”,但在机器学习和自然语言处理的上下文中,我们更倾向于将其理解为一种 “向量化” 或 “向量表示” 的技术,这有助于更准确地描述其在这些领域中的应用和作用。
(1)机器学习中的Embedding
- 原理:将离散数据映射为连续变量,捕捉潜在关系。
- 方法:使用神经网络中的Embedding层,训练得到数据的向量表示。
- 作用:提升模型性能,增强泛化能力,降低计算成本。
Embedding Model
在机器学习中,Embedding 主要是指将离散的高维数据(如文字、图片、音频)映射到低纬度的连续向量空间。这个过程会生成由实数构成的向量,用于