什么是ReAct框架
在使用langchain的过程中,大模型给人留下最深刻的印象无疑是Agent功能。大模型会自己分析问题,选择合适的工具,最终解决问题。这个功能背后的原理就是来自ReAct框架。
ReAct是Reasoning and Acting(也有一说是Reason Act)缩写,意思是LLM可以根据逻辑推理(Reason),构建完整系列行动(Act),从而达成期望目标。LLM灵感来源是人类行为和推理之间的协同关系。人类根据这种协同关系学习新知识,做出决策,然后执行。LLM模型在逻辑推理上有着非常优秀的表现,因此有理由相信LLM模型也可以像人类一样进行逻辑推理,学习知识,做出决策,并执行。在实际使用中,LLM会发生幻觉和错误判断的情况。这是因为LLM在训练的时候接触到的知识有限。因此对超出训练过程中使用的数据进行逻辑分析时,LLM就会开始不懂装懂地编造一些理由。因此对于解决这个问题最好的办法是,可以保证LLM模型在做出分析决策时,必须将应该有的知识提供给LLM。
ReAct方式的作用就是协调LLM模型和外部的信息获取,与其他功能交互。如果说LLM模型是大脑,那ReAct框架就是这个大脑的手脚和五官。同时具备帮助LLM模型获取信息、输出内容与执行决策的能力。对于一个指定的任务目标,ReAct框架会自动补齐LLM应该具备的知识和相关信息,然后再让LLM模型做出决策,并执行LLM的决策。