遥感&深度学习入门实战教程|补充篇②:激活函数全景图

在上一篇「PyTorch 入门必备」里,我们完成了最小线性回归。但仅靠线性模型,网络表达能力有限。
激活函数(Activation Function) 就是深度学习的关键,让神经网络具备了非线性建模能力。

🧩 为什么需要激活函数?

如果每一层都是线性变换(矩阵乘法 + 偏置),无论叠多少层,整体仍然等价于一次线性变换。
这意味着:

  • 没有激活函数 → 多层网络和一层没区别;
  • 有激活函数 → 网络能逼近任意复杂函数(通用近似定理)。

⚙️ 常见激活函数

1. Sigmoid

f(x)=11+e−x f(x) = \frac{1}{1+e^{-x}} f(x)=1+ex1

  • 值域 (0,1),形似 S 曲线
  • 早期广泛使用,但梯度在大数值时接近 0 → 梯度消失问题

2. Tanh

f(x)=tanh⁡(x) f(x) = \tanh(x) f(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

遥感AI实战

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值