在上一篇「PyTorch 入门必备」里,我们完成了最小线性回归。但仅靠线性模型,网络表达能力有限。
激活函数(Activation Function) 就是深度学习的关键,让神经网络具备了非线性建模能力。
🧩 为什么需要激活函数?
如果每一层都是线性变换(矩阵乘法 + 偏置),无论叠多少层,整体仍然等价于一次线性变换。
这意味着:
- 没有激活函数 → 多层网络和一层没区别;
- 有激活函数 → 网络能逼近任意复杂函数(通用近似定理)。
⚙️ 常见激活函数
1. Sigmoid
f(x)=11+e−x f(x) = \frac{1}{1+e^{-x}} f(x)=1+e−x1
- 值域 (0,1),形似 S 曲线
- 早期广泛使用,但梯度在大数值时接近 0 → 梯度消失问题
2. Tanh
f(x)=tanh(x) f(x) = \tanh(x) f(