深度学习数学基础 -矩阵和线性代数 奇异值分解

奇异值分解(SVD)是线性代数中一种重要的矩阵分解方法,广泛应用于特征提取、最小二乘问题及广义逆矩阵计算。在特征问题中,SVD能揭示矩阵的内在结构;在最小二乘法中,它提供了解决过定或欠定系统的有效途径。此外,SVD还在数据压缩和信号处理等领域有着不可或缺的角色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
奇异值分解
矩阵的奇异值分解在特征问题,最小二乘 矩阵的奇异值分解在特征问题,最小二乘 矩阵的奇异值分解在特征问题,最小二乘 法问题 及广义逆矩阵等方面有 重要应用 重要应用
在这里插入图片描述
在这里插入图片描述

奇异值的定义

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr Robot

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值