使用Hadoop MapReduce分析邮件日志提取 id、状态 和 目标邮箱
在大数据处理和分析的场景中,Hadoop MapReduce是一种常见且高效的工具。本文将展示如何使用Hadoop MapReduce来分析邮件日志,提取邮件的发送状态(成功、失败或退回)和目标邮箱。
项目结构
我们将创建一个Java项目,该项目包含三个主要部分:
**Mapper类:**解析邮件日志,提取ID、状态和目标邮箱。
**Reducer类:**汇总Mapper输出的数据,生成最终结果。
**Driver类:**配置和运行MapReduce作业。
数据格式
我们将处理的邮件日志示例如下:
在这些日志中,我们需要提取邮件的ID、发送状态(成功、失败或退回)和目标邮箱。
代码实现
以下是完整的Java代码,包含Mapper、Reducer和Driver类:
package org.example.mapReduce;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class MailLogAnalysis {
public static class MailLogMapper extends Mapper<LongWritable, Text, Text, Text&