基于PySpark 实现天气预测与模型集成
在大数据分析与机器学习领域,Spark 提供了强大的计算能力和灵活的扩展性。本文将介绍如何利用 PySpark 完成以下任务:
1、数据预处理:清洗和编码天气数据。
2、特征工程:合并数值和分类特征。
3、模型训练与评估:构建线性回归和随机森林模型。
4、模型集成:通过投票机制提升预测准确性。
以下是完整的代码和每一步的实现细节。
一、数据预处理
- 读取与清洗数据
我们使用 weatherAUS.csv 数据集,其中包含与澳大利亚各地天气相关的特征,例如温度、降雨量、湿度等。预处理包括:
将缺失值替换为 None。
删除含有缺失值的行。
def get_prepared_data():
# 创建Spark会话
spark = SparkSession.builder \
.appName("WeatherPrediction") \
.master("local[*]") \
.getOrCreate()
# 读取CSV数据
df = spark.read.csv("weatherAUS.csv", header=True, inferSchema=True)
df = df.select([when(col(c) == 'NA', None).otherwise(col(c)).alias(c) for c in df.columns])
df = df.dropna()
# 打印数据摘要
numeric_cols = [...] # 数值列列表
df.describe(numeric_cols).show()