本篇笔记从解方程组开始,并引入一种新运算,然后了解二阶行列式和三阶行列式相关定义,如元素、行标、列标、主对角线、次对角线等。同时为了研究行列式展开项与元素下标之间的关系,还引入了排列、逆序、逆序数、奇排列、偶排列、标准排列、自然排列、N级标准排列以及对换等概念。
1 方程组
{ 5 x + 6 y = 7 ① 9 x + 4 y = 3 ② \begin{cases} 5x+6y=7\qquad①\\ 9x+4y=3\qquad②\\ \end{cases} { 5x+6y=7①9x+4y=3②
将 ① × 9 、② × 5 ①×9、②×5 ①×9、②×5得:
{ 5 × 9 x + 6 × 9 y = 7 × 9 ③ 9 × 5 x + 4 × 5 y = 3 × 5 ④ \begin{cases} 5×9x+6×9y=7×9\qquad③\\ 9×5x+4×5y=3×5\qquad④\\ \end{cases} {
5×9x+6×9y=7×9③9×5x+4×5y=3×5④
将 ④ − ③ \color{red}{④-③} ④−③得:
( 5 × 4 − 6 × 9 ) y = 3 × 5 − 7 × 9 (5×4-6×9)y=3×5-7×9 (5×4−6×9)y=3×5−7×9
解得:
y = 3 × 5 − 7 × 9 5 × 4 − 6 × 9 ⑤ y=\frac{3×5-7×9}{5×4-6×9}\qquad⑤ y=5×4−6×93×5−7×9⑤
同理可得:
x = 7 × 4 − 6 × 3 5 × 4 − 6 × 9 ⑥ x=\frac{7×4-6×3}{5×4-6×9}\qquad⑥ x=5×4−6×97×4−6×3⑥
通过观察上述 ⑤ , ⑥ ⑤, ⑥ ⑤,⑥的值可以发现,分子和分母都是四个数分别为:两两先相乘,再相减。
2 定义一种新运算
通过左右两条竖线,中间放入四个数字,表示对角线上数字先相乘再相减,定义以下运算:
∣ a b c d ∣ = a d − c b \begin{vmatrix} a&b\\ c&d\\ \end{vmatrix} =ad-cb
acbd
=ad−cb
上述 x , y x, y x,y可表示为:
{ x = 7 × 4 − 6 × 3 5 × 4 − 6 × 9 = ∣ 7 3 6 4 ∣ ∣ 5 9 6 4 ∣ y = 3 × 5 − 7 × 9 5 × 4 − 6 × 9 = ∣ 3 9 7 5 ∣ ∣ 5 9 6 4 ∣ \begin{cases} x=\frac{7×4-6×3}{5×4-6×9}= \frac{ \begin{vmatrix} 7&3\\ 6&4\\ \end{vmatrix}}{ \begin{vmatrix} 5&9\\ 6&4\\ \end{vmatrix} }\\\\ y=\frac{3×5-7×9}{5×4-6×9}= \frac{ \begin{vmatrix} 3&9\\ 7&5\\ \end{vmatrix}}{ \begin{vmatrix} 5&9\\ 6&4\\ \end{vmatrix} } \end{cases} ⎩
⎨
⎧x=5×4−6×97×4−6×3=