实验 2 利用 PyTorch 实现简单的线性回归算法

本实验通过 PyTorch 框架实现了一个简单的线性回归模型,介绍了如何准备数据、构建模型并计算损失函数。实验详细阐述了如何使用 PyTorch 进行线性回归,包括数据点的生成、模型训练和测试,帮助读者熟悉 PyTorch 的基本操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实验 2 利用 PyTorch 实现简单的线性回归算法

一、实验介绍

1.1 实验内容

Pytorch 是由 Facebook 支持的一套深度学习开源框架,相比较 Tensorflow,

它更加容易快速上手,所以一经推出就广受欢迎。本课程是采用 Pytorch 开源框

架进行案例讲解的深度学习课程。我们将使用 PyTorch 构建一个简单的线性回

归网络。

1.2 实验知识点
  • 用 PyTorch 实现线性回归

用 PyTorch 实现线性回归

1.3 实验环境
  • Python3.9

  • PyTorch1.10.2

  • pytorch

二、利用 PyTorch 实现简单的线性回归算法

2.1 准备数据

下面使用 PyTorch 实现一个简单的线性回归算法。

线性回归是机器学习中最基础和简单的算法,你可以将它视为深度学习界的 HelloWorld。如果不了解线性回归,你可以简单的理解为:训练一条直线,让这条直线拟合一些数据点的趋势。

import torch
# 导入自动梯度运算包,主要用Variable这个类
from torch.autograd import Variable

#
import matplotlib.pyplot as plt

# 生成100个0---100间的数
x = Variable(torch.linspace(0, 100, 100).type(torch.FloatTensor))
# 生成100个正态分布随机数,均值为0,方差为10
rand = Variable(torch.randn(100)) * 10
y = x + rand

# 将Variable转换为数组,绘图
plt.plot(x.data.numpy(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

D之光

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值