三篇多模态大模型进展综述

  • Modality Bridging 综述
    多模态大型语言模型(MLLM)可实现基于图像撰写故事和无 OCR 的数学推理,在传统方法中很少见,这表明了通向通用人工智能的潜在路径。

通常人们会在 pair 数据上进行大规模(相对于 instruction tuning)的预训练,对齐数据集通常是图像文本对或自动语音识别(ASR)数据集,它们都包含文本。对齐预训练的常见方法是保持预训练模块(例如视觉编码器和 LLMs)冻结,并训练一个可学习的接口,本文调研了到近期位置不同的接口设计以及学习方法相关的文章。Ref

论文标题:
Flamingo: a Visual Language Model for Few-Shot Learning
论文链接:
https://arxiv.org/abs/2204.14198
  • 多模态大语言模型综述
论文链接:
https://arxiv.org/pdf/2306.13549.pdf
项目链接(每日更新最新论文):
https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models

相比于以往的多模态方法,例如以 CLIP 为代表的判别式,或以 OFA 为代表的生成式,新兴的 MLLM 展现出一些典型的特质:(1)模型大。MLLM 通常具有数十亿的参数量,更多的参数量带来更多的潜力;(2)新的训练范式。

为了激活巨大参数量的潜力,MLLM 采用了多模态预训练、多模态指令微调等新的训练范式,与之匹配的是相应的数据集构造方式和评测方法等。

在这两种特质的加持下,MLLM 涌现出一些以往多模态模型所不具备的能力,例如给定图片进行 OCR Free 的数学推理、给定图片进行故事创作和理解表情包的深层含义等。

本综述主要包括:

### 多模态大模型综述与研究进展 多模态大模型是一种融合多种数据形式(如文本、图像、音频等)的大规模机器学习模型,旨在解决跨模态的任务需求。这类模型的核心在于如何有效地捕捉和表示不同模态之间的关联性[^1]。 #### 一、基本概念和技术原理 多模态大模型的基础建立在深度学习框架之上,通常采用Transformer架构作为核心组件。该类模型通过联合训练的方式处理来自多个模态的数据输入,并设计特定的交叉注意力机制来增强模态间的交互效果。具体而言,这种技术能够有效提升模型对于复杂任务的理解能力,例如图文匹配、视频描述生成以及语音翻译等。 #### 二、少样本适应方法的研究进展 针对某些细粒度领域(如医学成像和遥感),由于标注数据稀缺或分布差异较大,传统的多模态大模型表现不佳。为此,研究人员提出了几种有效的少样本适应策略: 1. **基于提示的方法**:这种方法通过对输入数据附加额外的信息(即“提示”)引导模型关注关键特征,从而提高泛化性能。 2. **基于适配器的方法**:此方案引入轻量级模块调整预训练权重以适应新任务的需求,而无需重新训练整个网络结构。 3. **基于外部知识的方法**:利用已有的大规模语料库或其他资源扩充目标域的知识储备,帮助模型更好地完成迁移学习过程[^2]。 此外,为了进一步优化上述方法的效果,还存在以下潜在改进方向: - 自适应领域泛化; - 自适应模型选择; - 自适应知识利用。 这些措施有助于缓解因环境变化带来的负面影响,促进模型更加稳健地应对未知情况。 #### 三、应用场景与发展前景 随着技术不断进步,多模态大模型已经成功应用于众多实际场景之中,包括但不限于虚拟助手对话系统、自动驾驶感知决策单元以及社交媒体内容审核工具等领域。然而,当前仍面临诸多挑战亟待克服,比如计算成本高昂、能耗过大等问题。未来工作重点或将集中于以下几个方面展开探索:降低运行开销的同时保持甚至超越现有水平的表现力;加强理论支撑以便深入理解内部工作机制;推动标准化评估体系构建用于公平比较各类算法优劣等等[^4]。 ```python # 示例代码片段展示了简单版本的多模态编码解码流程 class MultiModalModel(nn.Module): def __init__(self, text_encoder, image_encoder, decoder): super(MultiModalModel, self).__init__() self.text_encoder = text_encoder self.image_encoder = image_encoder self.decoder = decoder def forward(self, texts, images): encoded_texts = self.text_encoder(texts) encoded_images = self.image_encoder(images) combined_representation = torch.cat((encoded_texts, encoded_images), dim=1) output = self.decoder(combined_representation) return output ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值