23.1 项目概述与架构设计
23.1.1 业务背景与价值
在当今的互联网产品中,实时洞察用户行为是精细化运营、提升用户体验和驱动业务增长的关键。例如:
- 实时监控:运营团队需要一个实时数据大盘,监控应用的核心指标(如DAU、PV、交易额),在指标发生异动时能第一时间预警和响应。
- 个性化推荐:当用户对某个商品表现出兴趣(如点击、加购)时,系统需要立即将其反馈到推荐引擎,调整下一次的推荐结果,提升转化率。
- 实时风控:在金融、电商等场景,需要实时检测异常登录、盗刷、恶意下单等风险行为,及时进行拦截,保障用户和平台安全。
本项目旨在构建一个通用的、端到端的实时用户行为分析系统,为上述业务场景提供强大的数据支持。
23.1.2 核心需求
- 实时数据采集:能够从多个客户端(Web, iOS, Android)低延迟、高可靠地接收用户行为数据。
- 实时数据处理:对采集到的数据流进行实时ETL、聚合计算,例如计算实时UV(独立访客)、PV(页面浏览量)、热门商品排行、用户画像标签等。
- 多维分析与查询:将处理后的结果存入高性能的OLAP引擎,支持分析师进行快速、灵活的多维度即席查询。
- 实时监控大盘:通过BI工具或自定义大屏,实时展示核心业务指标,监控业务健康状况。
- 高可用与可伸缩:整个系统架构应具备高可用性,无单点故障,并且能够水平扩展以应对未来业务量的增长。