基于darknet 的yolov4 的windows环境搭建

本文详细介绍了在Windows环境下安装配置Darknet及Yolo的步骤,包括英伟达驱动、CUDA、cuDNN的安装,以及使用Visual Studio 2019和OpenCV进行开发环境搭建的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考文章:

根据这几个文章写了下大概的流程,作为参考

  1. 下载英伟达驱动并安装
  2. 下载cuda11.1并安装
  3. 下载cudnn 8.1 并解压,复制对应的目录到cuda对应的文件夹(下载对应的cudnn)
  4. 下载Visual Studio 2019 并安装c++平台
  5. 下载opencv并解压,配置环境变量,
  6. 打开darknet-master\build\darknet下的darknet.sln
  • 如果cuda版本不是11.1的需要更改darknet.vcxproj里的cuda版本号,有两处需要修改

在这里插入图片描述

  • 55行与307行修改为自己的版本,我这里下载的是和代码里一样的版本,所以不需要修改

  • 生成dll的版本同理

  1. 配置visual studio 的opencv包含目录、库目录、附加依赖
  1. 生成解决方案
  2. 下载所需要的权重,如yolov3.weights,在readme里可以找到各种权重的链接
  3. 进入darknet-master\build\darknet\x64,测试结果
darknet.exe detector test cfg/coco.data yolov3.cfg yolov3.weights -i 0 -thresh 0.1 dog.jpg -ext_output

可以看到已经提供了许多写好的脚本,双击执行就可以了cmd

### 配置YOLOv11Windows 10上的运行环境 #### GPU环境YOLOv11的配置 对于希望利用GPU加速模型训练和推理的过程,在Windows 10上设置YOLOv11的工作环境涉及到几个关键步骤。考虑到官方资源通常更侧重于Linux平台的支持,因此可能需要额外调整来适应Windows操作系统。 为了确保最佳性能并减少潜在错误的发生率,推荐先创建一个新的Conda虚拟环境专门用于此项目[^1]: ```bash conda create -n yolov11 python=3.8 conda activate yolov11 ``` 接着安装必要的依赖库,特别是CUDA Toolkit以及cuDNN SDK版本需与所使用的NVIDIA显卡驱动相匹配。这一步骤至关重要,因为不兼容可能会引发各种难以诊断的问题。可以通过访问[NVIDIA官网](https://developer.nvidia.com/cuda-downloads)下载适合系统的软件包,并遵循其指导完成安装过程。 随后应考虑安装PyTorch或其他支持GPU运算的深度学习框架作为YOLOv11的基础支撑工具之一。这里提供了一个基于PyTorch的例子命令行操作方法: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 ``` 最后按照YOLOv11的具体需求进一步定制化安装其他Python模块,如OpenCV、NumPy等通用科学计算库。这些可以借助`requirements.txt`文件批量处理: ```bash pip install -r requirements.txt ``` #### CPU环境YOLOv11的配置 如果目标机器不具备合适的GPU硬件设施,则可以选择仅依靠CPU来进行部署。尽管速度会受到影响,但对于某些应用场景来说仍然是可行的选择。此时无需关注上述关于CUDA的部分,而应该专注于构建一个稳定高效的纯CPU版工作流。 同样地,从建立新的Conda环境起步,之后重点在于挑选那些能够在无GPU条件下良好运作的数据处理组件和服务端口。例如,当采用ONNX Runtime执行推理任务时,它提供了良好的跨平台特性并且易于集成至现有代码结构之中。 值得注意的是,虽然理论上任何能够解析Darknet架构定义文件(通常是`.cfg`格式)并与预训练权重配合工作的引擎都可以用来加载YOLO系列模型,但在实际应用过程中还是强烈建议参照原作者提供的指南或是社区内广泛认可的成功案例来进行具体实施[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值