构建智能体协作系统的新范式:全面解析微软 TEN-Agent 框架


一、引言:从单智能体到多智能体

随着大语言模型(LLMs)如 GPT-4、Claude、Gemini 的能力持续进化,我们已经可以构建出能够完成复杂任务的“超级个体”。然而,现实任务往往具有高度异构性和复杂的多步骤特征。依赖单一智能体来解决问题,逐渐显露出以下局限:

  • 上下文窗口受限:一个智能体一次只能处理有限的信息。
  • 任务拆解困难:复杂问题的模块化与职责划分能力有限。
  • 缺乏并行与容错能力:单点故障风险高,无法并行执行任务。

于是,多智能体系统(Multi-Agent Systems, MAS)迅速崛起。通过让多个角色分工协作、互相通信,人们希望模拟一个“虚拟团队”来共同解决现实问题。

微软的开源项目 TEN-Agent 就是其中的代表之一,提出了构建任务驱动、可扩展、多智能体系统的新范式。


二、TEN-Agent 简介

TEN-Agent 是由微软 Research Asia 在 2024 年底开源的项目,全名为 Task-driven Explicitly social and modular multi-agent Network (TEN)。其核心理念是:

模拟人类组织中的任务驱动协作行为,通过“组织结构 + 明确通信 + 角色能力模块”来构建高效多智能体系统。

与 AutoGen 等工具相比,TEN-Agent 更加强调:

  • 组织结构建模:如部门、层级、角色之间的组织关系;
  • 模块能力重用:Agent 不只是语言接口,而是带有能力插件(Tools)的实体;
  • 明确通信路径:每个 agent 之间通信有规则、有通道,非广播式。

✅ 项目地址:

👉 https://github.com/microsoft/TEN-agent


三、架构设计与核心概念

TEN-Agent 的核心设计理念基于以下三个关键抽象层:

1. Agent:智能体

每个 Agent 是一个“具备能力的角色实体”,其拥有以下要素:

  • 角色名称与职责(如 PM、工程师、审稿人);
  • 语言模型接口(默认支持 OpenAI、Azure、ChatGPT API);
  • 能力模块(Modules):封装工具能力,如代码生成器、搜索引擎、数据处理器等;
  • 通信端口(Ports):接收与发送消息。

2. Organization:组织结构

TEN-Agent 中的 Agent 并非混乱通信,而是受控于一套组织结构(Organization Graph):

  • 明确的消息流转路径
  • 可以模拟公司、科研团队、项目组等层级结构
  • 支持角色之间依赖建模(如管理者与执行者)

3. TEN-Task:任务描述器

TEN-Agent 通过 TENTask 定义一个任务,包括:

  • 📝 任务目标
  • 🧩 子任务分解方式
  • 🔁 是否允许重试
  • 📩 哪些 Agent 负责哪一步

这种结构化定义使得任务执行更稳健、可重用、可测试。


四、模块组成与功能解读

TEN-Agent 的代码结构清晰,主要模块如下:

模块功能描述
ten_agent/agent/定义智能体类,包括基础 Agent、带模块的 Agent、多轮交互 Agent
ten_agent/org/构建组织结构图,定义通信拓扑
ten_agent/module/能力插件模块,如搜索器、代码生成器、文件分析器等
ten_agent/task/任务描述器与调度器
ten_agent/pipeline/支持多 Agent 组成流水线任务执行
ten_agent/log/日志记录与对话状态追踪

下面我们结合一个完整案例进行讲解。


五、实战案例:构建一个“论文审稿系统”

🎯 目标:

模拟一个由“作者 - 编辑 - 审稿人”组成的论文审稿流程,任务包括:

  1. 作者提交论文摘要;
  2. 编辑判断领域方向与分配审稿人;
  3. 审稿人评估后给出建议;
  4. 编辑整合后给出决策反馈。

步骤一:定义 Agent 角色

from ten_agent.agent import BaseAgent

author = BaseAgent(name="Author", system_message="你是一位论文作者。请撰写摘要并提交。")
editor = BaseAgent(name="Editor", system_message="你是一位期刊编辑,请根据摘要分配审稿人并做最终决策。")
reviewer = BaseAgent(name="Reviewer", system_message="你是审稿人,请根据摘要给出评价和建议。")

步骤二:构建组织通信图

from ten_agent.org import OrganizationGraph

org = OrganizationGraph()
org.add_agent(author)
org.add_agent(editor)
org.add_agent(reviewer)

org.add_connection("Author", "Editor")
org.add_connection("Editor", "Reviewer")
org.add_connection("Reviewer", "Editor")

步骤三:定义任务流

from ten_agent.task import TENTask

task = TENTask(
    task_id="paper_review",
    entry_agent="Author",
    description="提交论文摘要并完成审稿流程",
    final_agent="Editor"
)

步骤四:运行多智能体系统

org.run_task(task)

运行结果会显示智能体之间多轮通信的对话日志,并最终完成任务。


六、与 AutoGen 的区别与优劣对比

特性TEN-AgentAutoGen
通信结构显式组织图,支持层级/团队结构广播或注册式
模块机制明确模块类,支持模块热插拔Tool 绑定在角色中
日志追踪对话状态持久化,支持 Debug支持 Logging
多轮交互原生支持支持,但复杂度高
文档与维护新项目,文档较简略成熟度较高

总结:AutoGen 更适合快速搭建通用 AI 工作流,TEN-Agent 更偏向构建“组织行为模拟”的复杂系统,尤其适用于科研、企业流程建模等。


七、高级特性扩展

✅ 自定义能力模块

TEN-Agent 支持将自定义函数、API 封装为能力模块:

from ten_agent.module import BaseModule

class Calculator(BaseModule):
    def execute(self, inputs):
        return str(eval(inputs.get("expression")))

然后绑定到某个 Agent:

engineer.add_module("calculator", Calculator())

在对话中你就可以调用:

请使用 calculator 模块计算:3 * (4 + 2)

✅ 多智能体流水线(Pipeline)

通过 PipelineBuilder,可以将多个 Agent 组合成串行/并行流水线,例如:

pipeline = PipelineBuilder() \
    .add_stage("DataCollector", ...) \
    .add_stage("DataAnalyzer", ...) \
    .add_stage("ReportWriter", ...) \
    .build()

pipeline.run(input_data)

非常适用于数据分析、报告生成、论文撰写等流程性任务。


✅ 状态恢复与可视化

TEN-Agent 的 logger 模块支持保存每轮消息,未来可接入 Streamlit/Gradio 实现可视化调试:

from ten_agent.log import Logger

logger = Logger()
logger.save_conversation("log/task_001.json")

八、应用场景与落地方向

TEN-Agent 的设计理念天然适合模拟现实组织流程,因此其适用场景包括但不限于:

  • 📚 科研协作模拟:科研任务管理、文献阅读、论文写作;
  • 🏢 企业内部工作流:员工任务分派、流程审批、人事流程;
  • 👨‍⚖️ 法律辅助系统:模拟法官-律师-原被告等角色协同;
  • 🏥 医学协同诊断:医生、护士、AI助手多角色协作诊疗;
  • 📊 智能报表生成:数据拉取、分析、撰写、审阅流水线;
  • 🤖 AI 角色扮演游戏系统:构建具有社会互动的 AI NPC 群体。

九、项目发展现状与展望

截至 2025 年 5 月,TEN-Agent 的 GitHub Star 数量已超 2000,社区开始涌现出:

  • 📦 插件模块库(如搜索、爬虫、Pandas 分析器);
  • 🏗️ 组织图构建 GUI 工具;
  • 🔍 与 LangChain、AutoGen、ChatDev 生态整合尝试;
  • 📈 商业版工具链,例如作为 AgentOps 后端调度框架。

未来的方向可以包括:

  • ✨ 更丰富的组织模型(如矩阵式组织、多团队协作);
  • 🧠 与图神经网络结合进行 Agent 通信图优化;
  • 🔐 多 Agent 权限与安全控制;
  • 🎮 与游戏引擎结合,实现 AI 社会仿真。

十、总结

TEN-Agent 为多智能体系统的构建提供了一套结构化、模块化、可视化、可拓展的解决方案。它跳出了单 Agent 的思维模式,真正将智能体“组织”了起来,从而更加贴近现实协作流程与任务驱动逻辑。

未来,在人机协作、智能办公、自动化决策系统的发展中,TEN-Agent 提供了极具启发性的架构范式。

如果你正尝试构建更复杂、更稳定、更接近现实组织结构的多智能体系统,TEN-Agent 无疑是一个值得深入学习和尝试的新利器。


📎 附录与参考链接


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萧鼎

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值