一、引言:从单智能体到多智能体
随着大语言模型(LLMs)如 GPT-4、Claude、Gemini 的能力持续进化,我们已经可以构建出能够完成复杂任务的“超级个体”。然而,现实任务往往具有高度异构性和复杂的多步骤特征。依赖单一智能体来解决问题,逐渐显露出以下局限:
- 上下文窗口受限:一个智能体一次只能处理有限的信息。
- 任务拆解困难:复杂问题的模块化与职责划分能力有限。
- 缺乏并行与容错能力:单点故障风险高,无法并行执行任务。
于是,多智能体系统(Multi-Agent Systems, MAS)迅速崛起。通过让多个角色分工协作、互相通信,人们希望模拟一个“虚拟团队”来共同解决现实问题。
微软的开源项目 TEN-Agent 就是其中的代表之一,提出了构建任务驱动、可扩展、多智能体系统的新范式。
二、TEN-Agent 简介
TEN-Agent 是由微软 Research Asia 在 2024 年底开源的项目,全名为 Task-driven Explicitly social and modular multi-agent Network (TEN)。其核心理念是:
模拟人类组织中的任务驱动协作行为,通过“组织结构 + 明确通信 + 角色能力模块”来构建高效多智能体系统。
与 AutoGen 等工具相比,TEN-Agent 更加强调:
- 组织结构建模:如部门、层级、角色之间的组织关系;
- 模块能力重用:Agent 不只是语言接口,而是带有能力插件(Tools)的实体;
- 明确通信路径:每个 agent 之间通信有规则、有通道,非广播式。
✅ 项目地址:
👉 https://github.com/microsoft/TEN-agent
三、架构设计与核心概念
TEN-Agent 的核心设计理念基于以下三个关键抽象层:
1. Agent:智能体
每个 Agent 是一个“具备能力的角色实体”,其拥有以下要素:
- 角色名称与职责(如 PM、工程师、审稿人);
- 语言模型接口(默认支持 OpenAI、Azure、ChatGPT API);
- 能力模块(Modules):封装工具能力,如代码生成器、搜索引擎、数据处理器等;
- 通信端口(Ports):接收与发送消息。
2. Organization:组织结构
TEN-Agent 中的 Agent 并非混乱通信,而是受控于一套组织结构(Organization Graph
):
- 明确的消息流转路径;
- 可以模拟公司、科研团队、项目组等层级结构;
- 支持角色之间依赖建模(如管理者与执行者)。
3. TEN-Task:任务描述器
TEN-Agent 通过 TENTask
定义一个任务,包括:
- 📝 任务目标
- 🧩 子任务分解方式
- 🔁 是否允许重试
- 📩 哪些 Agent 负责哪一步
这种结构化定义使得任务执行更稳健、可重用、可测试。
四、模块组成与功能解读
TEN-Agent 的代码结构清晰,主要模块如下:
模块 | 功能描述 |
---|---|
ten_agent/agent/ | 定义智能体类,包括基础 Agent、带模块的 Agent、多轮交互 Agent |
ten_agent/org/ | 构建组织结构图,定义通信拓扑 |
ten_agent/module/ | 能力插件模块,如搜索器、代码生成器、文件分析器等 |
ten_agent/task/ | 任务描述器与调度器 |
ten_agent/pipeline/ | 支持多 Agent 组成流水线任务执行 |
ten_agent/log/ | 日志记录与对话状态追踪 |
下面我们结合一个完整案例进行讲解。
五、实战案例:构建一个“论文审稿系统”
🎯 目标:
模拟一个由“作者 - 编辑 - 审稿人”组成的论文审稿流程,任务包括:
- 作者提交论文摘要;
- 编辑判断领域方向与分配审稿人;
- 审稿人评估后给出建议;
- 编辑整合后给出决策反馈。
步骤一:定义 Agent 角色
from ten_agent.agent import BaseAgent
author = BaseAgent(name="Author", system_message="你是一位论文作者。请撰写摘要并提交。")
editor = BaseAgent(name="Editor", system_message="你是一位期刊编辑,请根据摘要分配审稿人并做最终决策。")
reviewer = BaseAgent(name="Reviewer", system_message="你是审稿人,请根据摘要给出评价和建议。")
步骤二:构建组织通信图
from ten_agent.org import OrganizationGraph
org = OrganizationGraph()
org.add_agent(author)
org.add_agent(editor)
org.add_agent(reviewer)
org.add_connection("Author", "Editor")
org.add_connection("Editor", "Reviewer")
org.add_connection("Reviewer", "Editor")
步骤三:定义任务流
from ten_agent.task import TENTask
task = TENTask(
task_id="paper_review",
entry_agent="Author",
description="提交论文摘要并完成审稿流程",
final_agent="Editor"
)
步骤四:运行多智能体系统
org.run_task(task)
运行结果会显示智能体之间多轮通信的对话日志,并最终完成任务。
六、与 AutoGen 的区别与优劣对比
特性 | TEN-Agent | AutoGen |
---|---|---|
通信结构 | 显式组织图,支持层级/团队结构 | 广播或注册式 |
模块机制 | 明确模块类,支持模块热插拔 | Tool 绑定在角色中 |
日志追踪 | 对话状态持久化,支持 Debug | 支持 Logging |
多轮交互 | 原生支持 | 支持,但复杂度高 |
文档与维护 | 新项目,文档较简略 | 成熟度较高 |
总结:AutoGen 更适合快速搭建通用 AI 工作流,TEN-Agent 更偏向构建“组织行为模拟”的复杂系统,尤其适用于科研、企业流程建模等。
七、高级特性扩展
✅ 自定义能力模块
TEN-Agent 支持将自定义函数、API 封装为能力模块:
from ten_agent.module import BaseModule
class Calculator(BaseModule):
def execute(self, inputs):
return str(eval(inputs.get("expression")))
然后绑定到某个 Agent:
engineer.add_module("calculator", Calculator())
在对话中你就可以调用:
请使用 calculator 模块计算:3 * (4 + 2)
✅ 多智能体流水线(Pipeline)
通过 PipelineBuilder
,可以将多个 Agent 组合成串行/并行流水线,例如:
pipeline = PipelineBuilder() \
.add_stage("DataCollector", ...) \
.add_stage("DataAnalyzer", ...) \
.add_stage("ReportWriter", ...) \
.build()
pipeline.run(input_data)
非常适用于数据分析、报告生成、论文撰写等流程性任务。
✅ 状态恢复与可视化
TEN-Agent 的 logger
模块支持保存每轮消息,未来可接入 Streamlit/Gradio 实现可视化调试:
from ten_agent.log import Logger
logger = Logger()
logger.save_conversation("log/task_001.json")
八、应用场景与落地方向
TEN-Agent 的设计理念天然适合模拟现实组织流程,因此其适用场景包括但不限于:
- 📚 科研协作模拟:科研任务管理、文献阅读、论文写作;
- 🏢 企业内部工作流:员工任务分派、流程审批、人事流程;
- 👨⚖️ 法律辅助系统:模拟法官-律师-原被告等角色协同;
- 🏥 医学协同诊断:医生、护士、AI助手多角色协作诊疗;
- 📊 智能报表生成:数据拉取、分析、撰写、审阅流水线;
- 🤖 AI 角色扮演游戏系统:构建具有社会互动的 AI NPC 群体。
九、项目发展现状与展望
截至 2025 年 5 月,TEN-Agent 的 GitHub Star 数量已超 2000,社区开始涌现出:
- 📦 插件模块库(如搜索、爬虫、Pandas 分析器);
- 🏗️ 组织图构建 GUI 工具;
- 🔍 与 LangChain、AutoGen、ChatDev 生态整合尝试;
- 📈 商业版工具链,例如作为 AgentOps 后端调度框架。
未来的方向可以包括:
- ✨ 更丰富的组织模型(如矩阵式组织、多团队协作);
- 🧠 与图神经网络结合进行 Agent 通信图优化;
- 🔐 多 Agent 权限与安全控制;
- 🎮 与游戏引擎结合,实现 AI 社会仿真。
十、总结
TEN-Agent 为多智能体系统的构建提供了一套结构化、模块化、可视化、可拓展的解决方案。它跳出了单 Agent 的思维模式,真正将智能体“组织”了起来,从而更加贴近现实协作流程与任务驱动逻辑。
未来,在人机协作、智能办公、自动化决策系统的发展中,TEN-Agent 提供了极具启发性的架构范式。
如果你正尝试构建更复杂、更稳定、更接近现实组织结构的多智能体系统,TEN-Agent 无疑是一个值得深入学习和尝试的新利器。
📎 附录与参考链接
- ✅ GitHub 地址:https://github.com/microsoft/TEN-agent
- 📖 论文/报告:https://arxiv.org/abs/2403.04666
- 🔗 AutoGen 项目:https://github.com/microsoft/autogen
- 💬 LangChain AgentHub:https://smith.langchain.com/agents
- 🎬 视频演示:https://www.bilibili.com/video/BV1xx4y1L7ms (社区用户)