310-Minimum Height Trees

本文介绍了一种算法,用于找出给定树形图中所有可能的最小高度树,并提供了详细的实现步骤及示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

类别:graph

难度:medium

题目描述

For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.

Format
The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).

You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

Example 1:

Given n = 4edges = [[1, 0], [1, 2], [1, 3]]

        0
        |
        1
       / \
      2   3

return [1]

Example 2:

Given n = 6edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]

     0  1  2
      \ | /
        3
        |
        4
        |
        5

return [3, 4]


算法分析

(1)要使得树的高度最小,只需要每一次的时候将所有的当前的度为1的节点作为叶子节点,同时该节点的度数置为-1,剩余节点数字减去1,并度为1的所有叶子节点放在同一层,然后将这些节点删掉并且将它们相邻节点的度减去1,

(2)同样的,在删掉一层也叶子节点以后,再一次找当前的叶子节点,以此类推

(3)直到剩余一个节点的时候,停止

(4)判断还有多少节点的度>=0,即为所求的根节点集合


代码实现

class Solution {
public: 
    vector<int> findMinHeightTrees(int n, vector<pair<int, int>>& edges) {
    	vector<int> ans;
    	int edgeNum = edges.size();
    	vector< unordered_set<int>> adj(n);
    	for (int i = 0; i < edgeNum; ++i) {
    		adj[edges[i].first].insert(edges[i].second);
    		adj[edges[i].second].insert(edges[i].first);
		}
		vector<int> degree(n, 0);
		for (int i = 0; i < n; ++i) {
			degree[i] = adj[i].size();
		}
		int remainNum = n;
		while (remainNum > 2) {
            vector<int> delNodes;
			for (int i = 0; i < n; ++i) {
				if (degree[i] == 1) {
					remainNum--;
					delNodes.push_back(i);
					degree[i] = -1;
				}
			}
			for (int i = 0; i < delNodes.size(); ++i) {
                // 注意:unordered_set中的元素不能够用访问数组的方式进行访问
				unordered_set<int> neighbors = adj[delNodes[i]]; 
				for (auto it = neighbors.begin(); it != neighbors.end(); ++it) {
					degree[*it]--;
				}
//				for (auto neighbor : adj[delNodes[i]]) {
//                    degree[neighbor]--;
//               }
			}
		}
		for (int i = 0; i < n; ++i) {
			if (degree[i] >= 0) ans.push_back(i);
		}
		return ans;
    }
}; 



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值