类别:graph
难度:medium
题目描述
For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.
Format
The graph contains n
nodes which are labeled from 0
to n
- 1
. You will be given the number n
and a list of undirected edges
(each
edge is a pair of labels).
You can assume that no duplicate edges will appear in edges
. Since all edges are undirected, [0,
1]
is the same as [1, 0]
and thus will not appear together in edges
.
Example 1:
Given n = 4
, edges
= [[1, 0], [1, 2], [1, 3]]
0 | 1 / \ 2 3
return [1]
Example 2:
Given n = 6
, edges
= [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]
0 1 2 \ | / 3 | 4 | 5
return [3, 4]
算法分析
(1)要使得树的高度最小,只需要每一次的时候将所有的当前的度为1的节点作为叶子节点,同时该节点的度数置为-1,剩余节点数字减去1,并度为1的所有叶子节点放在同一层,然后将这些节点删掉并且将它们相邻节点的度减去1,
(2)同样的,在删掉一层也叶子节点以后,再一次找当前的叶子节点,以此类推
(3)直到剩余一个节点的时候,停止
(4)判断还有多少节点的度>=0,即为所求的根节点集合
代码实现
class Solution {
public:
vector<int> findMinHeightTrees(int n, vector<pair<int, int>>& edges) {
vector<int> ans;
int edgeNum = edges.size();
vector< unordered_set<int>> adj(n);
for (int i = 0; i < edgeNum; ++i) {
adj[edges[i].first].insert(edges[i].second);
adj[edges[i].second].insert(edges[i].first);
}
vector<int> degree(n, 0);
for (int i = 0; i < n; ++i) {
degree[i] = adj[i].size();
}
int remainNum = n;
while (remainNum > 2) {
vector<int> delNodes;
for (int i = 0; i < n; ++i) {
if (degree[i] == 1) {
remainNum--;
delNodes.push_back(i);
degree[i] = -1;
}
}
for (int i = 0; i < delNodes.size(); ++i) {
// 注意:unordered_set中的元素不能够用访问数组的方式进行访问
unordered_set<int> neighbors = adj[delNodes[i]];
for (auto it = neighbors.begin(); it != neighbors.end(); ++it) {
degree[*it]--;
}
// for (auto neighbor : adj[delNodes[i]]) {
// degree[neighbor]--;
// }
}
}
for (int i = 0; i < n; ++i) {
if (degree[i] >= 0) ans.push_back(i);
}
return ans;
}
};