- 博客(12)
- 资源 (1)
- 收藏
- 关注
转载 【Pyechart 经典并行多图】pyechart实现看板案例
【Pyechart 经典并行多图】pyechart实现看板案例, 短小但是非常精巧, 适合练习
2022-08-15 17:12:51
955
2
原创 【HiveSQL】查询练习(pandas连接hadoop, jupyter 输出)
【HiveSQL】查询练习(pandas连接hadoop, jupyter 输出)
2022-08-05 06:59:42
625
原创 Hive Sql 分析实例: 淘宝消费者行为分析
本文侧重用 Hive SQL 处理数据1. 数据集说明这次分析用的数据是来自阿里云天池:数据集来源:user_behavior数据采用csv格式保存, 未解压前905MB, 解压后3.41G数据集包含了 2017 年 11 月 25 日至 2017 年 12 月 3 日之间,有行为的约一百万随机用户的所有行为(行为包括点击、购买、加购、喜欢)。数据集的组织形式和 MovieLens-20M 类似,即数据集的每一行表示一条用户行为,由用户 ID、商品 ID、商品类目 ID、行为类型和时间戳组成,.
2022-01-13 16:01:11
2743
2
原创 电商用户消费数据RFM分析
1. 导入数据, 查看数据信息import pandas as pdimport numpy as npimport matplotlib.pyplot as plt#import datetime as dtimport timeimport warningswarnings.filterwarnings("ignore")plt.rcParams['font.family'] = 'Microsoft YaHei' # 设置中文编码的正常显示plt.rcParams['axes.u
2022-01-13 15:57:38
1962
2
翻译 淘宝消费者行为分析实例(pandas, matplotlib, pyechart)(超详细)
##数据集介绍:数据集下载地址: 阿里云天池: User Behavior Data from Taobao for Recommendation介绍UserBehavior 是阿里巴巴提供的一个淘宝用户行为数据集文件名称说明包含特征UserBehavior.csv包含所有的用户行为数据用户 ID,商品 ID,商品类目 ID,行为类型,时间戳UserBehavior.csv数据集包含了 2017 年 11 月 25 日至 2017 年 12 月
2022-01-13 15:55:59
3118
原创 这 20 个Pandas 函数, 你可能没试过
Pandas 是 pytho 里主流的数据分析库。Pandas 之所以如此普遍,是因为集功能性、灵活性于一体。为了简化数据分析过程, Pandas 其实内置了许多功能和方法.本文举例说明 20 个 Pandas 好用的功能和方法。希望这些方法对精进中的你有帮助.```pyimport numpy as npimport pandas as pd```## 1. querydf.query(expr,inplace = False,** kwargs) # 使用布尔表达式查询帧的列参
2022-01-13 15:33:49
664
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人