1. 详解
STL (Seasonal-Trend decomposition procedure based on Loess) [1] 为时序分解中一种常见的算法,基于LOESS将某时刻的数据\(Y_v\)分解为趋势分量(trend component)、周期分量(seasonal component)和余项(remainder component):
\[Y_v = T _v + S_v + R_v \quad v= 1, \cdots, N \]
STL分为内循环(inner loop)与外循环(outer loop),其中内循环主要做了趋势拟合与周期分量的计算。假定\(T_v^{(k)}\)、\(S_v{(k)}\)为内循环中第k-1次pass结束时的趋势分量、周期分量,初始时\(T_v^{(k)} = 0\);并有以下参数:
- \(n_{(i)}\)内层循环数,
- \(n_{(o)}\)外层循环数,
- \(n_{(p)}\)为一个周期的样本数,
- \(n_{(s)}\)为Step 2中LOESS平滑参数,
- \(n_{(l)}\)为Step 3中LOESS平滑参数,
- \(n_{(t)}\)为Step 6中LOESS平滑参数。
每个周期相同位置的样本点组成一个