时间序列异常检测算法S-H-ESD

本文介绍了基于统计的异常检测方法,包括Grubbs' Test和ESD,然后详细阐述了时间序列异常检测的S-ESD和S-H-ESD算法,后者使用中位数和MAD提高对异常点的识别能力,适用于云环境和时间序列数据分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 基于统计的异常检测

Grubbs' Test

Grubbs' Test为一种假设检验的方法,常被用来检验服从正太分布的单变量数据集(univariate data set)\(Y\) 中的单个异常值。若有异常值,则其必为数据集中的最大值或最小值。原假设与备择假设如下:

\(H_0\): 数据集中没有异常值\(H_1\): 数据集中有一个异常值

Grubbs' Test检验假设的所用到的检验统计量(test statistic)为

\[G = \frac{\max |Y_i - \overline{Y}|}{s} \]

其中,\(\overline{Y}\)为均值,\(s\)为标准差。原假设\(H_0\)被拒绝,当检验统计量满足以下条件

\[G > \frac{(N-1)}{\sqrt{N}}\sqrt{\frac{ (t_{\alpha/(2N), N-2})^2}{N-2 + (t_{\alpha/(2N), N-2})^2}} \]

其中,\(N\)为数据集的样本数,\(t_{\alpha/(2N), N-2}\)为显著度(significance level)等于\(\alpha/(2N)\)、自由度(d

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浅唱书令

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值