面试官:请解释机器学习中的"过拟合"现象
你的回答:想象你背下整本习题册答案,但遇到新题型就懵了。过拟合就是模型对训练数据过度依赖,把噪声当规律。比如推荐系统过度关注用户某次偶然点击,在新用户场景就失效了。产品经理要监控训练集和测试集的性能差异,当两者差距拉大就是警报。
面试官:如何向非技术同事说明"泛化性"?
你的回答:泛化性是模型的"举一反三"能力。就像会解鸡兔同笼问题的学生,遇到车轮数量问题也能推理。语音识别模型在会议室表现好,到嘈杂地铁站仍能识别,就是泛化性强。产品设计中要关注数据多样性,避免模型成为"温室花朵"。
面试官:损失函数在产品迭代中起什么作用?
你的回答:损失函数是模型的"错题本"。每次预测错误就记一笔账,产品经理通过损失值变化判断优化方向。比如电商推荐系统,点击率下降但损失函数值稳定,可能是数据漂移而非模型故障。我们设置早停机制(Early Stopping),当验证集损失不再下降立即冻结迭代。
面试官:决策树为什么需要剪枝?
你的回答:不剪枝的决策树像死记硬背的学生。比如招聘系统根据"是否985毕业"、"实习经历"等特征无限细分,最终每个叶子节点只对应单个候选人。这种模型遇到新简历就失效。剪枝是主动合并冗余判断分支,用泛化能力换精确度平衡。