面试官:实际场景中人脸采集需关注哪些核心参数?这些参数如何影响识别效果?
你的回答:
图像大小决定识别距离——60×60像素是最低门槛,百万人群库场景需100×100以上保障特征提取。分辨率直接影响识别距离上限:4K摄像头最远10米,7K可达20米。
光照环境需动态平衡:过曝会丢失纹理,过暗导致噪点,需通过补光或HDR算法优化。
遮挡与角度是落地难点:口罩遮挡时需调整模型关注眼部特征;侧脸超过30度需增加多角度训练数据。安防场景建议摄像头俯角≤15度以抓取完整人脸。
面试官追问:如何量化评估人脸检测模型效果?
你的回答: 举个银行ATM机的案例:某监控画面含7张人脸,系统检测出4张(含1个误报的路标)。
- 检测率=3/7≈42.8%(真实检出率)
- 误检率=1/4=25%(干扰项误判)
- 漏检率=4/7≈57.1%(关键安防漏洞)
产品需结合场景权衡指标:金融场景追求误检率<1%,而社交App可接受更高漏检率换取实时性。
面试官:人脸匹配环节的阈值设定有什么门道?
你的回答: 这本质是精确率与召回率的博弈。假设1000张图片含600个目标人物: