数学-线性代数3(相关性、基、维数、四个基本子空间)

本文深入探讨了线性相关性、基和维数的概念。线性无关是指除零向量外没有其他线性组合能形成零向量,线性相关则存在非零线性组合为零的情况。基是一组线性无关的向量,能生成整个空间,且空间的维数等于基中向量的数量。此外,矩阵的零空间与列空间的维数、秩有密切关系,可用于判断向量组的线性相关性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录:

九、线性相关性、基、维数

1、线性无关与线性相关

2、基

3、维数

4、总结



九、线性相关性、基、维数

1、线性无关与线性相关

1)背景知识

首先强调,接下来我们谈论的概念都是基于向量组的,而不是基于矩阵。线性无关、线性相关是向量组内的关系,基也是一个向量组,不要与矩阵概念混淆。

首先从之前学习的 Ax = 0 方程谈起。假设 m*n 的矩阵 A:

显然n > m,以这样的矩阵 A 构成的方程 Ax = 0,此时未知数的个数比方程的个数多。未知数一共 n 个,方程一共 m 个。

所以此时 A 的零空间中除零向量以外还有其他向量,原因是这样的 A 一定有自由变量(至少有 n-m 个自由变量),这就造成了零空间中向量的无穷解。

2)线性无关与线性相关

我们之前也接触了线性无关与线性相关的相关概念。接下来直接给出定义:

(1)线性无关

除系数全为 0 的情况外,没有其他线性组合方式能得到零向量,则这组向量线性无关。设向量组为 1、2、3…xn。即 c 不全为 0 时,任何 11 + 22 + ……线性组合的结果都不为零,则此向量组线性无关。

(2)线性相关

除了零组合之外还有其他的线性组合方式能得到零向量,则这组向量线性相关。

注:如果一个向量组中有零向量存在,那么这个向量组一定是线性相关的。

比如在三维欧几里得空间R的三个矢量(1, 0, 0),(0, 1, 0)和(0, 0, 1)线性无关;但(2, −1, 1),(1, 0, 1)和(3, −1, 2)线性相关,因为第三个是前两个的和。再举几个例子感受一下上面的概念:

【例】

(1)v1与2v1组成的向量组:-2(v1) + (2v1) = 0 线性相关

(2)v1与零向量组成的向量组:0(v1) + 1(0) = 0 线性相关

(3)二维平面上不共线的两个向量:没有线性组合可以使它们构成零向量所以此向量组线性无关。

(4)二维平面上不共线的三个向量:二维平面上的三个向量之间一定是线性相关的

这里用到了我们上面的背景知识的延伸。

首先构造此图对应的矩阵 A:

很明显,寻找线性组合可以写成如下形式:

显然A 矩阵是 n>m 型的矩阵。而根据我们的背景知识(2.1),Ac = 0 这个方程对应的零空间中,除了零向量肯定还有其他向量,也就是存在一种 c 不全为 0 的情况,使 A 各列线性组合后得到 0。也就是 A 各列的v1、v2、v3线性相关。

很明显,【例】中第 4 题将线性相关与线性无关与零空间联系了起来。

3)零空间的作用

根据上面的例题 4,我们再从矩阵的零空间与矩阵列向量角度重新定义。

向量组的线性相关/无关。假设现有一 m*n 矩阵 A:

(1)如果 A 各列向量构成的向量组是线性无关的,那么矩阵 A 的零空间中只有零向量。

(2)如果 A 各列向量构成的向量组是线性相关的,那么矩阵 A 零空间中除零向量之外还一定有其他向量。

很好理解上面零空间角度的定义。因为零空间反映的就是 A 各列向量的线性组合。

秩的角度看来:

(1)线性无关对应向量组构成的矩阵,秩为 n,此时没有自由变量,零空间中只有零向量存在。

(2)线性相关对应向量组构成的矩阵,秩小于 n,有 n-r 个自由变量,零空间中有很多向量。

4)生成空间

所谓生成空间,即为此空间由向量v1、v2、v3…vn即它们的线性组合构成,就称v1、v2、v3…vn生成了一个空间,可以理解为:把向量组的所有线性组合放到了一个空间里面。

但是v1、v2、v3…vn不一定是线性无关的,我们更关心线性无关的v1、v2、v3…vn,因为它们可以表示出空间的特征,这就引出了“基”的概念。

2、基

首先给出“基”的概念:一组向量v1、v2、v3…vn,具有两个性质:

(1)1、2、3…线性无关。

(2)1、2、3…生成整个空间。

例:三维空间中的

基可以代表空间的很多性质,十分重要。一个空间的基有很多种,比如三维空间的基还可以是

但是我们发现,一个空间的不同基,其中向量的个数是一定的。如果A是Rn空间的基,那么 A 中向量的个数就是 n 个。比如三维空间R3,基一定是三个向量构成的向量组。

这里给出一个性质:

Rn中的 n 个向量构成基,则以这 n 个向量构成的 n*n 矩阵必须可逆。这个性质很好理解,矩阵可逆就意味着任意两行,两列都线性无关,所以可以构成一组生成空间的基。

3、维数

上面介绍基的时候提到了“Rn空间的基中向量个数为 n 个。”这个“n”我们称之为维数。同一个空间内,即使基不同,基向量的个数也必须相等。

理解维数也很简单,像我们的三维空间,其基一定是三个三维向量(三个向量,每个向量有三个分量),四维空间的基也一定是四个四维向量。 

4、总结

这一节学习了很多概念问题,我们通过一道例题回顾一下【例】假设列空间由矩阵 A 确定: 

则有接下来几个问题:

(1) A 的各列是不是 A 列空间的基?显然不是。

从线性组合角度看,列 1 加列 2 等于列 3,这几列显然线性相关。或从零空间的角度看来,求 A 的零空间中向量:Ac=0

其中一个特解为:

就意味着零空间中不只有零向量。所以这些列向量线性相关,不能构成基。

(2) 找出 A 列空间的一个基从 A 的结构看来:

显然,可以取前两列作为基。所以 A 的列空间的维数为:2。

再看 A 矩阵,显然 A 的秩为 2,消元后只有两个主列。所以有:矩阵 A 的秩 = 矩阵 A 主列的个数 = A 列空间的维数

这下我们就将矩阵的秩与列空间的维数联系了起来,而更重要的是,我们知道了列空间的维数,那么在这个列空间中随便找两个线性无关的向量,它们就可以构成一组基,这组基就可以生成这个列空间。

(3) A 对应零空间的维数为多少?

所谓零空间维数,即是零空间基的个数,也是 Ax = 0 的特解的个数,还可以理解为:Ax = 0 的解中自由变量的个数。

最简单的方法是解 Ax = 0 这个方程。经过消元,自由变量赋值,回代,最后得到两个特解:

所以此零空间的维数为 2。

类似,有这样一个很简单的公式:m*n 矩阵中,主列个数为 r,秩为 r,则有:零空间维数 = n-r


把问题时时放在心头,直到一点曙光逐渐破晓终而变成阳光普照。觉得不错,动动发财的小手点个赞哦!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱上电路设计

你的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值