诗词-已然绿盈盈蓝点缀

文|随意的风

1、已然绿盈盈蓝点缀

已然绿盈盈蓝点缀,

更有蝶恋花。

塘池碧猗波平。土膏微润,麦田苗寸许。

近来又庭外风、庭内枣树着春雨。

腊梅早年刬,香难得。似不与枣树同梦。

索居无一亊,弄子堂前。

2、己亥除岁有感

窗上门边把红添,幸福来年宏图展。

蜿转小径绕村环,庭前烟花迷人眼。

万盏灯火人不眠,不远千里祈团圆。

天眼高悬震妖魔,边疆战士保平安。

路侧别墅平地现,人民大众开新颜。

改革开放四十年,祖国繁盛把话赞!

3、复兴号

绿水和青山中穿梭,

牵动着千家与万户

大地上跳动着你的音符,

载着我们踏向归途----复兴号!

祖国为之荣光,世界为之仰慕。

4、弥月祝贺

朋友千金满地跑,又添贵子喜眉梢。

千金可爱又乖巧,生得公子萌宝宝。

膝下儿女齐双全,生产效率甚是高。

亲朋好友聚一堂,欢声笑语乐陶陶。


人间有味是清欢,诗酒趁年华。觉得不错,动动发财的小手点个赞哦!

内容概要:本文档详细介绍了一个基于MATLAB实现的跨尺度注意力机制(CSA)结合Transformer编码器的多变量时间序列预测项目。项目旨在精准捕捉多尺度时间序列特征,提升多变量时间序列的预测性能,降低模型计算复杂度与训练时间,增强模型的解释性和可视化能力。通过跨尺度注意力机制,模型可以同时捕获局部细节和全局趋势,显著提升预测精度和泛化能力。文档还探讨了项目面临的挑战,如多尺度特征融合、多变量复杂依赖关系、计算资源瓶颈等问题,并提出了相应的解决方案。此外,项目模型架构包括跨尺度注意力机制模块、Transformer编码器层和输出预测层,文档最后提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,尤其是熟悉MATLAB和深度学习的科研人员、工程师和研究生。 使用场景及目标:①需要处理多变量、多尺度时间序列数据的研究和应用场景,如金融市场分析、气象预测、工业设备监控、交通流量预测等;②希望深入了解跨尺度注意力机制和Transformer编码器在时间序列预测中的应用;③希望通过MATLAB实现高效的多变量时间序列预测模型,提升预测精度和模型解释性。 其他说明:此项目不仅提供了一种新的技术路径来处理复杂的时间序列数据,还推动了多领域多变量时间序列应用的创新。文档中的代码示例和详细的模型描述有助于读者快速理解和复现该项目,促进学术和技术交流。建议读者在实践中结合自己的数据集进行调试和优化,以达到最佳的预测效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱上电路设计

你的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值