
计算机视觉
文章平均质量分 97
全栈你个大西瓜
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
计算机视觉:YOLOv11遥感图像目标检测(附代码)
计算机视觉领域,遥感图像中的目标检测,识别和定位不同类型的飞机是一个典型的应用场景。本文利用最新的YOLOv11模型来解决这一挑战,通过构建一个高效的飞机检测模型,实现对遥感图像中各类飞机的精准识别。原创 2025-02-24 00:12:07 · 1510 阅读 · 0 评论 -
计算机视觉:经典数据格式(VOC、YOLO、COCO)解析与转换(附代码)
在计算机视觉(CV)领域,无论是进行目标检测、图像分类还是其他任务,理解如何处理不同格式的数据集以及掌握训练过程中涉及的关键指标至关重要。本文将探讨三种经典的数据格式(VOC、YOLO、COCO)原创 2025-02-23 21:21:59 · 1436 阅读 · 0 评论 -
计算机视觉:主流数据集整理
在计算机视觉(CV)领域,数据集的质量和多样性对于推动算法创新和技术进步至关重要。本文整理当前最流行且最具影响力的数据集,涵盖目标检测、图像分类、语义分割、姿态估计等多个关键方向。原创 2025-02-22 22:46:04 · 1562 阅读 · 0 评论 -
探索YOLO技术:目标检测的高效解决方案
YOLO是一种用于计算机视觉任务的对象检测系统,它由Joseph Redmon等人于2015年提出,于2016年发布YOLOv1,并在随后的几年中经历了多次迭代和改进,目前最新的版本是2024年9月发布的YOLO11。YOLO的目标是实现实时对象检测,同时保持较高的准确率。原创 2025-02-22 20:43:01 · 1915 阅读 · 0 评论 -
MTCNN 人脸检测技术揭秘:原理、实现与实战(附代码)
MTCNN即多任务级联卷积神经网络,是一种用于人脸检测和对齐的深度学习方法。在2016年提出,旨在同时进行人脸检测和面部特征点定位(如眼睛、鼻子、嘴巴的位置)。该方法通过一个多阶段的级联卷积神经网络架构来实现高效且准确的人脸检测。原创 2025-02-20 23:30:06 · 1215 阅读 · 4 评论 -
计算机视觉:目标检测从简单到容易(附代码)
在计算机视觉领域,目标检测是一项核心任务,它旨在从图像或视频中同时检测出多个目标物体,并确定它们的类别和位置。原创 2025-02-20 00:06:28 · 1197 阅读 · 0 评论 -
计算机视觉:神经网络实战之手势识别(附代码)
手势识别作为计算机视觉领域的一个重要应用,通过分析图像或视频序列来识别特定的手势动作。下面以0-9手势数字识别为案例,从数据加载、预处理到模型训练的手势识别全流程,基于PyTorch框架构建经典卷积神经网络。原创 2025-02-18 20:58:04 · 1745 阅读 · 0 评论 -
搭建一个经典的LeNet5神经网络(附代码)
LeNet-5最初用于MNIST数据集的手写数字识别任务,取得了高达99.2%的准确率。这一成就标志着深度学习在图像识别领域的突破,并为后续的神经网络研究奠定了基础。原创 2025-02-17 00:10:51 · 1033 阅读 · 0 评论 -
计算机视觉:卷积神经网络(CNN)基本概念(二)
卷积神经网络(Convolutional Neural Network, CNN)是一种专门设计用于处理图像数据的深度学习模型,是计算机视觉领域的核心技术,从人脸识别到自动驾驶,它的应用无处不在。它在图像识别、分类、目标检测等领域表现出色,通过一系列组件如卷积层、池化层和全连接层等,能够自动从图像中学习有用的特征,而无需手动设计。它是如何从图像中“看见”并理解世界的?本文将解析CNN的核心组件、特征抽取原理,并通过代码展示其强大能力。原创 2025-02-15 23:34:55 · 1169 阅读 · 2 评论 -
计算机视觉:卷积神经网络(CNN)基本概念(一)
卷积神经网络( CNN)是一种专门设计用于处理图像数据的深度学习模型,是计算机视觉领域的核心技术,从人脸识别到自动驾驶,它的应用无处不在。它在图像识别、分类、目标检测等领域表现出色,通过一系列组件如卷积层、池化层和全连接层等,能够自动从图像中学习有用的特征,而无需手动设计。它是如何从图像中“看见”并理解世界的?本文将解析CNN的核心组件、特征抽取原理,并通过代码展示其强大能力。原创 2025-02-15 23:30:50 · 3218 阅读 · 0 评论 -
计算机视觉中图像的基础认知
在计算机视觉中,图像和视频的本质是多维数值矩阵。在深度学习框架中,如何理解图片的格式?如何理解颜色通道?原创 2025-02-13 22:43:44 · 2944 阅读 · 0 评论