tensorflow应用:双向LSTM神经网络手写数字识别
思路
将28X28的图片看成28行像素,按行展开成28时间步,每时间步间对识别都有影响,故用双向LSTM神经元,其实每列间对识别也有影响,用卷积神经网络也许更合理,这里只是学习LSTM的用法。应该也可以用两个双向LSTM神经网络进行联合预测,一个按行扫描,一个按列扫描。
Python程序1.建模训练保存
# coding=utf-8
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"]='2' # 只显示 warning 和 Error
import tensorflow as tf
from tensorflow.contrib import rnn
import numpy as np
###data (50000,784),(1000,784),(1000,784):
import pickle
import gzip
def load_data():
f = gzip.open('../data/mnist.pkl.gz', 'rb')
training_data, validation_data, test_data = pickle.load(f,encoding='bytes')
f.close()
return (training_data, validation_data, test_data)
def vectorized_result(j):
e = np.zeros(10)
e[j] = 1.0
return e
training_data, validation_data, test_data = load_data()
trainData_in=training_data[0][:50000]
trainData_out=[vectorized_result(j) for j in training_data[1][:50000]]
validData_in=validation_data[0]
validData_out=[vectorized_result(j) for j in validation_data[1]]
testData_in=test_data[0][:100]
testData_out=[vectorized_result(j) for j in test_data[1][:100]]
#define constants
#unrolled through 28 time steps 28行对应28个时间步:
TIME_STEPS=28
#hidden LSTM units
NUM_HIDDEN=128
#???rows of 28 pixels 每行28个像素:
NUM_INPUT=28
#learning rate for adam
LEARNING_RATE=0.001
#mnist is meant to be classified in 10 classes(0-9).
NUM_CLASSES=10
#size of batch
BATCH_SIZE=1024