标准相干态:基础数学解读
1. 引言
标准相干态具有广泛的性质,涵盖了从“波包”表达式到代数、群表示、泛函分析等多个方面,还涉及经典与量子世界的关系问题。接下来,我们将深入探讨其在不同框架下的性质。
2. 希尔伯特空间框架下的性质
2.1 从经典复平面到量子态的“连续性”
在希尔伯特空间 (H) 中,标准相干态构成了一个“连续”的量子态族,由复平面 (C) 上的所有点标记。设 (z = \frac{q + i p}{\sqrt{2}}),相干态族中两个元素的标量积或重叠由以下公式给出:
(\langle z_1|\tilde{z}_2\rangle = e^{z_1z_2})
(\langle z_1|z_2\rangle = e^{i(z_1\wedge z_2)} e^{-\frac{|z_1 - z_2|^2}{2}})
后一个复值表达式永远不为零,并且在无穷远处呈高斯衰减。从复平面 (C) 到希尔伯特空间 (H) 的映射 (z \to |z\rangle) 的连续性可由上述重叠推导得出:
(| |z\rangle - |z’\rangle |^2 = 2(1 - \Re\langle z|z’\rangle))
(= 2\left(1 - e^{-\frac{|z - z’|^2}{2}}\cos\left(\frac{q p’ - pq’}{2}\right)\right) \to_{z’ \to z} 0)
2.2 “相干”的单位分解
相干态的一个重要特征是,它们不仅在 (H) 中构成一个完备族(即 (H) 是该族线性张成的闭包),还能分