4、标准相干态:基础数学与应用

标准相干态:基础数学与应用

1. 位移算子与魏尔 - 海森堡群

位移算子 (D(z)) 由于存在相位因子,不能简单看作是平移的表示。两个连续位移的非对易性体现为:
[D(z_1)D(z_2) = e^{2iz_2\wedge z_1}D(z_2)D(z_1)]
这是正则对易关系 ([Q, P] = i\mathrm{Id}) 的积分形式。这里 (z \to D(z)) 是阿贝尔群 (C) 的投影表示,因为两个算子 (D(z_1)) 和 (D(z_2)) 组合会产生相位因子。

这种非对易性使得我们需要考虑比复数更广泛的集合,即魏尔 - 海森堡群 (W \simeq \mathbb{R} \ltimes \mathbb{C})。群中的元素 (g = (s, z) = (s, q, p)) 对应李代数中的元素 (X = is\mathrm{Id} + za^{\dagger} - \overline{z}a)。群的运算规则为:
[(s_1, z_1)(s_2, z_2) = (s_1 + s_2 - z_1\wedge z_2, z_1 + z_2)]
等价于
[(s_1, q_1, p_1)(s_2, q_2, p_2) = \left(s_1 + s_2 - \frac{1}{2}(q_1 p_2 - q_2 p_1), q_1 + q_2, p_1 + p_2\right)]
其单位元是 ((0, 0, 0)),逆元是 ((s, z)^{-1} = (-s, -z))。

2. 相干态在信号分析中的应用

考虑让位移算子 (D(z)) 作用于任意选择的态 (|\psi\rangle \in \math

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值