7、相干态:通用构造与应用解读

相干态:通用构造与应用解读

1. 相干态构造方案概述

在相干态的构造中,最开始我们需要一系列的参数或数据集合。以经典意义来说,有集合 $C$,例如描述直线上粒子运动的初始条件集合,它配备了勒贝格测度 $\frac{d^2z}{\pi}$。同时,存在一个“大”的希尔伯特空间 $L^2(C, \frac{d^2z}{\pi})$,在信号分析框架里,这个空间可看作是有限能量图像的空间。

还有一组正交归一函数 ${e_n(z) \in L^2(C, \frac{d^2z}{\pi}), n \in N}$,它们满足概率恒等式 $\sum_{n=0}^{\infty} |e_n(z)|^2 = 1$。基于这些,我们能得到一族标准相干态 $|z\rangle$,其中 $e_n(z)$ 是在基元素 $e_n$(或 $|n\rangle$)上的正交投影。而且,上述恒等式保证了态的归一化 $\langle z|z\rangle = 1$,$e_n(z)$ 的正交归一性则保证了在相应希尔伯特空间中的单位分解。

2. 测度空间的“量子”处理

量子力学和信号分析有很多共通之处。它们都从一组基本参数集合 $X = {x \in X}$ 出发。在量子力学里,$X$ 可能是经典相空间,比如直线上粒子运动对应的复平面;在信号分析中,它可能是时频平面(用于加博分析)或时标半平面(用于小波分析)。实际上,$X$ 可以是任何可观测的数据集合,像时间线、圆或者某个区间。

要对 $X$ 进行处理,至少需要在 $X$ 上存在一个测度 $\mu(dx)$。此时,$(X, \mu)$ 或简单记为 $X$ 可称为观测集,测度的存在让我们能对 $X$ 上所有可测实值或复值函数 $f(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值