SU(1,1) 或 SL(2,R) 相干态:理论与应用解析
1. 引言
相干态在量子物理领域具有重要地位,本文聚焦于第三类广为人知的相干态——SU(1, 1) 相干态。Perelomov 曾用群论方法构建了此类相干态,这里我们采用另一种方式,选取复平面上的单位圆盘作为观测集。后续我们将详细阐述这些相干态的主要特性,涵盖概率层面、与 SU(1, 1) 表示的关联以及经典特性等方面。此外,我们还会借助单位圆盘的无界表示——庞加莱半平面进行信号分析,将 SU(1, 1) 群转换为其实数副本 SL(2, R),进而实现信号的连续小波或时频变换。
2. 单位圆盘作为观测集
在物理中,除了复平面、无限圆柱和球面外,单位圆盘 $D = {z \in C, |z| < 1}$ 也具有重要意义。它在诸多物理场景中,或是作为基础模型,或是作为教学示例。例如,它可作为物质粒子在单叶二维双曲面上运动的相空间模型,此双曲面可视为具有负常曲率的 (1 + 1) 维时空,即二维反德西特时空。在信号分析里,时频半平面作为单位圆盘的无界版本,是连续小波变换的变量集合。
单位圆盘是二维双曲几何的简单示例,具有与球面类似的优良特性,不过它是非紧致有界区域。通过引入庞加莱度量,它常被用作双曲平面的模型。庞加莱度量是描述具有负常曲率二维曲面的度量张量,在当前情况下(忽略常数因子)可表示为:
[ds^2 = \frac{dz d\overline{z}}{(1 - |z|^2)}]
相应的表面元素为:
[\mu(d^2z) = \frac{d(\Re z) d(\Im z)}{(1 - |z|^2)^2} = \frac{i}{2} \frac{dz \wedge