无限势阱和Pöschl - Teller势中的量子运动及相干态研究
1. 无限势阱和Pöschl - Teller势中的量子运动
1.1 无限势阱中的量子运动
在无限势阱 (0 \leq x \leq \pi a) 中,量子系统的波函数在势阱外必须为零。因此,对波函数施加边界条件:
(\psi_{iw}(x) = 0),当 (x \geq \pi a) 且 (x \leq 0) 。
也可以用以下条件替代:
(\psi_{iw} \in L^2([0, \pi a], dx)),(\psi_{iw}(0) = \psi_{iw}(\pi a) = 0) 。
或者考虑周期化的势阱,施加周期性边界条件 (\psi_{iw}(n\pi a) = 0),(\forall n \in Z) 。
对于质量为 (m) 的被困粒子,选择平移后的哈密顿量:
(H = H_w = - \frac{\hbar^2}{2m} \frac{d^2}{dx^2} - \frac{\hbar^2}{2ma^2}) 。
粒子的波函数随时间演化:
(\Psi_{iw}(x, t) = e^{-\frac{i}{\hbar}Ht}\Psi_{iw}(x, 0)) ,其中 (\Psi_{iw}(x, 0) = \psi_{iw}(x)) 满足本征值方程 (H\psi_{iw}(x) = E \psi_{iw}(x)) 。
归一化的本征态和对应的本征值为:
(\psi_{iw}^n (x) = \sqrt{\frac{2}{\pi a}} \sin\frac{(n + 1)x}{a} = \langle x|\psi_{iw}^