相干态与压缩态的物理特性解析
1. 相干态的物理特性
1.1 相干态的运动与复兴
相干态的运动具有经典周期,并受复兴相位调制。当平均量子数 $\bar{n}$ 较大时,经典周期 $T_{cl}$ 远小于复兴时间 $t_{rev}$。在 $t$ 较小时(相对于 $t_{rev}$ 取模),经典周期起主导作用,运动呈现以 $T_{cl}$ 为周期的周期性。随着 $t$ 从 0 增加且相对于 $t_{rev}$ 不可忽略时,复兴项会导致波包扩散和坍缩,形成一系列子波,即分数复兴,它们以 $T_{cl}$ 的有理分数为周期做周期性运动。在 $t_{rev}$ 的整数倍时会出现完全复兴。
为了展示波包 $\psi(x, t) = \langle x|\psi(t)\rangle$ 的复兴结构,可计算其自相关函数:
[A(t) = \langle\psi(x, 0) |\psi(x, t)\rangle = \sum_{n\geq0} |c_n|^2 e^{-iE_n t/\hbar}]
数值上,$|A(t)|^2$ 在 0 到 1 之间变化。当 $\psi(x, t)$ 与初始波包 $\psi(x, 0)$ 完全匹配时,$|A(t)|^2$ 达到最大值 1;当两者不重叠时,$|A(t)|^2$ 为 0。分数复兴和分数“超复兴”通常表现为 $|A(t)|^2$ 中的周期性峰值,其周期为经典往返时间 $T_{cl}$ 和复兴时间 $t_{rev}$ 的有理分数。
1.2 Mandel 统计特征
权重分布 $|c_n|^2$ 对于理解波包的时间行为至关重要。可将其与泊松分布 $\langle n\rangle^n e^{-\la