量子光学中的压缩态与费米子相干态解读
1. 量子光学中的压缩态
在量子光学领域,压缩态是一个重要的概念。压缩态的主要特征在于它能够在特定方向上对“量子不确定性”圆进行变形,使其成为一个不确定性椭圆,从而为降低两个正交分量之一的量子噪声提供了途径。
例如,当一个光学参量放大器以真空作为输入时,它可以产生压缩真空,将一个正交分量的噪声降低约 10 dB。在这种情况下,平均光子数(并非平均光子数)为零。
1.1 压缩态的代数内容
压缩态通常是通过利用随时间变化的经典源来驱动双光子过程而获得的,因此也被称为双光子相干态。其对应的最一般形式的哈密顿量为:
[H = \hbar\omega\left(a^{\dagger}a + \frac{1}{2}\right) + f_2(t) a^{\dagger 2} + f_2(t) a^2 + f_1(t) a^{\dagger} + f_1(t)a]
其中,(f_1(t)) 和 (f_2(t)) 的相对重要性决定了是产生相干态还是压缩态。这个哈密顿量具有“双光子”李代数 (h_6) 的形式,该代数由算符集合 ({a, a^{\dagger}, \text{Id}, N = a^{\dagger}a, a^2, a^{\dagger 2}}) 生成。
从以下非平凡的对易规则:
([a, a^{\dagger}] = \text{Id})
([a, N] = a)
([a^{\dagger}, N] = -a^{\dagger})
([a^2, a^{\dagger}] = 2a)
([a^{\dagger 2}, a] = -2a^