相干态或框架量子化:理论与应用
1. 引言
物理学作为自然科学的一部分,主要研究“自然”,具体来说包括“时间”“空间”“物质”“能量”和“相互作用”。这些研究对象在特定时刻以“显著”数据的形式呈现,如位置、速度和频率等。面对收集到的以特定数学形式编码的“原始”数据,并借助赋予数据子集重要性权重的测度函数,我们需要选择合适的分析框架来处理这些数据。
量子处理也包含在这个通用方案中,类似于在量子力学中对经典相空间进行量子化。量子化不仅仅局限于物理学的特定领域,如力学或场论,而是涉及更广泛的学科。本文旨在推广Berezin - Klauder - Toeplitz量子化方法,即给定一个按照特定方式构造的相干态族或框架,对测度空间X进行量子化。同时,还将探讨这种量子化方案产生的上下符号概念,并讨论其概率内容。为了直观说明,还会给出一个简单例子,即使用2×2矩阵对圆进行量子化。
2. 量子化的一些思路
量子化问题有多种解决方法。简单来说,量子化是将经典可观测量的代数Acl与量子可观测量的代数Aq建立对应关系的过程。Acl通常是辛(或相)空间X上可导函数的交换泊松代数,而Aq一般是非交换的,量子化过程需提供从Acl到Aq的对应关系f → Af。不同的量子化方法至少需满足以下条件:
- 常数函数1对应Aq中的单位元。
- Aq的对易关系重现Acl的泊松关系,同时实现海森堡代数。
- Aq是作用于某个希尔伯特空间的算子代数。
大多数物理量子理论可通过正则量子化过程得到,但该过程的规则较为随意,且难以协变实现,因此难以推广到许多系统。几何量子化充分利用了相空间的辛结构,但通常需要更多结构,如辛势。而变形量子化更具一般性,它仅