20、有限集、单位区间和单位圆的相干态量子化及相位算子研究

有限集、单位区间和单位圆的相干态量子化及相位算子研究

1. 有限集与单位区间的相干态量子化

在量子理论中,相干态量子化是一种重要的方法。对于有限集和单位区间的相干态量子化,我们先从一些基本的矩阵和函数开始。

首先,定义了第一个泡利矩阵 $\sigma_1$ 为:
[
\sigma_1 =
\begin{pmatrix}
0 & 1 \
1 & 0
\end{pmatrix}
]

当选择函数 $f(x) = x^p$(其中 $\text{Re} p > -1$)时,有算子 $A_{x^p}$ 的表达式为:
[
A_{x^p} = \frac{1}{p + 1}
\begin{pmatrix}
1 & 2^{-p} - 1 \
2^{-p} - 1 & 1
\end{pmatrix}
]

对于任意相干态 $|x_0\rangle$($x_0 \in [0, 1]$),$A_{x^p}$ 的下符号 $\langle x_0|A_{x^p}|x_0\rangle$ 有两个可能的值,这两个值恰好是上述矩阵的特征值。具体来说,“位置”算子的平均值 $\langle x_0|A_x|x_0\rangle$ 为:
- 当 $0 \leq x_0 \leq \frac{1}{2}$ 时,$\langle x_0|A_x|x_0\rangle = \frac{1}{4}$;
- 当 $\frac{1}{2} \leq x_0 \leq 1$ 时,$\langle x_0|A_x|x_0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值