量子系统中的相干态量化与环面运动量化
1. 无限深势阱中运动的相干态量化
当参数 $\rho$ 趋近于 0 时,所有的本征值都趋近于 0,这种行为对应着经典极限。
1.1 通过下符号研究量子行为
下符号是使用归一化的相干态来计算的。归一化相干态表示为:
$|x⟩ = |x, +⟩ + |x, –⟩$ (15.50)
量子可观测量 $A$ 的下符号计算如下:
$\check{A}(x) = ⟨x|A|x⟩ = \check{A} {++}(x) + \check{A} {+–}(x) + \check{A} {–+}(x) + \check{A} {––}(x)$
-
位置可观测量 :在向量相干态 $|x⟩$ 中,位置算符的平均值为
$⟨x|Q |x⟩ = \frac{L}{2} - Q(q, p)$ (15.51)
其中,$Q(q, p)$ 是对经典位置平均值的修正函数,其表达式为
$Q(q, p) = \frac{2L}{\pi^2} \frac{1}{S} \sum_{n,n’=1,n\neq n’}^{n+n’=2k+1} \exp\left(- \frac{1}{4\rho^2} (p_n - p_{n’})^2\right) \left(\frac{1}{(n - n’)^2} - \frac{1}{(n + n’)^2}\right) \left(\exp\left(- \frac{1}{2\rho^2} [(p - p_n)^2 + (p - p_{n’})^2]\right) + \