22、量子系统中的相干态量化与环面运动量化

量子系统中的相干态量化与环面运动量化

1. 无限深势阱中运动的相干态量化

当参数 $\rho$ 趋近于 0 时,所有的本征值都趋近于 0,这种行为对应着经典极限。

1.1 通过下符号研究量子行为

下符号是使用归一化的相干态来计算的。归一化相干态表示为:
$|x⟩ = |x, +⟩ + |x, –⟩$ (15.50)
量子可观测量 $A$ 的下符号计算如下:
$\check{A}(x) = ⟨x|A|x⟩ = \check{A} {++}(x) + \check{A} {+–}(x) + \check{A} {–+}(x) + \check{A} {––}(x)$

  • 位置可观测量 :在向量相干态 $|x⟩$ 中,位置算符的平均值为
    $⟨x|Q |x⟩ = \frac{L}{2} - Q(q, p)$ (15.51)
    其中,$Q(q, p)$ 是对经典位置平均值的修正函数,其表达式为
    $Q(q, p) = \frac{2L}{\pi^2} \frac{1}{S} \sum_{n,n’=1,n\neq n’}^{n+n’=2k+1} \exp\left(- \frac{1}{4\rho^2} (p_n - p_{n’})^2\right) \left(\frac{1}{(n - n’)^2} - \frac{1}{(n + n’)^2}\right) \left(\exp\left(- \frac{1}{2\rho^2} [(p - p_n)^2 + (p - p_{n’})^2]\right) + \

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值