环面与球面的量子化:相干态、魏尔量化及模糊几何
1. 环面的相干态
1.1 标准相干态的修改
在研究环面的相干态时,我们先对标准相干态的定义和符号进行修改,以适应环面的情境。选择一个相位调制的高斯函数作为位置表示中的基态:
[
\psi_Z^{(0,0)}(x) \triangleq \left(\frac{I_Z}{\pi\hbar}\right)^{\frac{1}{4}} e^{i\frac{R_Z}{2\hbar}x^2} e^{-\frac{I_Z}{2\hbar}x^2}
]
其中 (Z) 是一个复数参数,且 (I_Z > 0)。然后,通过位移算符对这个基态进行幺正变换,得到相干态在位置表示下的形式:
[
\psi_Z^{(q,p)}(x) \triangleq e^{\frac{i}{\hbar}(pQ - qP)} \psi_Z^{(0,0)}(x) = \left(\frac{I_Z}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{ipq}{2\hbar}} e^{\frac{i}{\hbar}px} e^{\frac{iZ}{2\hbar}(x - q)^2}
]
这些函数属于施瓦茨空间 (S),并且满足 (L^2(\mathbb{R})) 中的单位分解:
[
\int_{\mathbb{R}^2} \frac{dq dp}{2\pi\hbar} |\psi_Z^{(q,p)}\rangle\langle\psi_Z^{(q,p)}| = \text{Id}
]