概率论基础形式体系
1. 西格玛代数(σ - 代数)
设 $X$ 是一个集合,$X$ 的子集族 $F$ 是一个 $\sigma$ - 代数,当且仅当它具有以下性质:
1. 空集 $\varnothing$ 属于 $F$。
2. 如果 $A$ 属于 $F$,那么 $A$ 的补集也属于 $F$。
3. 如果 $A_1, A_2, A_3, \cdots$ 是 $F$ 中的一个序列,那么它们的(可数)并集也属于 $F$。
从性质 1 和 2 可以推出 $X$ 属于 $F$;从性质 2 和 3 可以推出 $\sigma$ - 代数在可数交运算下也是封闭的。$\sigma$ - 代数主要用于定义集合 $X$ 上的测度,测度将在下一节中定义。有序对 $(X, F)$,其中 $X$ 是一个集合,$F$ 是 $X$ 上的一个 $\sigma$ - 代数,被称为可测空间。
1.1 示例
- 仅由空集 $\varnothing$ 和 $X$ 组成的子集族是 $X$ 上的一个 $\sigma$ - 代数,即所谓的平凡 $\sigma$ - 代数。$X$ 上的另一个 $\sigma$ - 代数是 $X$ 的幂集,即 $X$ 的所有子集构成的集合 $P(X)$。
- 如果 ${F_{\alpha}}$ 是 $X$ 上的一族 $\sigma$ - 代数,那么所有 $F_{\alpha}$ 的交集也是 $X$ 上的一个 $\sigma$ - 代数。
- 如果 $U$ 是 $X$ 的任意子集族,那么我们可以从 $U$ 构造一个特殊的 $\sigma$ - 代数,称为由 $U$ 生成的 $\sigma$ - 代