李代数、李群及其表示基础
在数学和物理学中,李代数、李群及其表示理论是非常重要的内容。下面将详细介绍这些概念的基础知识。
1. 群变换与表示
- 群变换 :集合 $S$ 的变换是 $S$ 到自身的一一映射。若群 $G$ 中每个元素 $g$ 都对应集合 $S$ 的一个变换 $s \to g \cdot s$,且对于 $G$ 中任意两个元素 $g_1$ 和 $g_2$ 以及 $S$ 中的 $s$,有 $(g_1 g_2) \cdot s = g_1 \cdot (g_2 \cdot s)$,则称 $G$ 是 $S$ 的变换群,此时 $S$ 称为 $G$ - 空间。若对于 $S$ 中的任意 $s_1$ 和 $s_2$,都存在 $g \in G$ 使得 $s_2 = g \cdot s_1$,则称该变换群在 $S$ 上是可迁的,$S$ 称为齐次 $G$ - 空间。
- 群表示 :群 $G$ 的(线性)表示是一个连续函数 $g \to T(g)$,其取值在向量空间 $V$ 的非奇异连续线性变换群中,并且满足函数方程 $T(g_1 g_2) = T(g_1)T(g_2)$ 和 $T(e) = Id$($e$ 是 $G$ 的单位元,$Id$ 是 $V$ 中的单位算子)。由此可得 $T(g^{-1}) = (T(g))^{-1}$,即 $T(g)$ 是 $G$ 到 $V$ 的非奇异连续线性变换群的同态。
- 酉表示 :若线性算子 $T(g)$ 关于 $V$ 上的内积 $\langle \cdot | \cdot \rangle$ 是酉的,即对于