19、XML解析与转换技术详解

XML解析与转换技术详解

1. SAX与DOM的使用场景

1.1 SAX的适用场景

SAX(Simple API for XML)处理通常比DOM(Document Object Model)更快,因为它不会跟踪或在内存中构建文档树,从而消耗更少的内存,并且不会提前查看文档以解析节点引用。由于访问是顺序的,SAX非常适合以下应用场景:
- 仅对读取XML数据感兴趣的应用程序。
- 不需要操作数据的应用程序,例如读取数据进行渲染的应用程序和读取XML中定义的配置数据的应用程序。

不过,如果主要目的是读取数据并将其作为Java对象进行后续处理,JAXB是更好的选择。

此外,需要通过添加、删除或修改数据中的特定元素来过滤XML数据的应用程序也适合使用SAX访问。可以串行读取XML并修改特定元素。

1.2 DOM的适用场景

SAX和DOM的区别在于顺序只读访问和随机读写访问。如果在处理过程中需要在兄弟元素或嵌套元素之间横向移动,或者回溯到之前处理过的元素,DOM可能是更好的选择。

然而,创建和操作DOM会占用大量内存。因此,如果XML文件大且复杂,或者JVM内存受限(如在J2ME设备中),DOM处理不是一个好选择。

1.3 何时不使用SAX和DOM

如果要执行的任务和XML数据很简单,通常不需要使用XML解析器, java.io.StreamTokenizer 就足够了。例如,如果任务是读取文件并将已知元素值替换为另一个值,使用字符串操作比使用SAX和DOM更快,且资源消耗更少。

此外,并

资源下载链接为: https://pan.quark.cn/s/140386800631 通用大模型文本分类实践的基本原理是,借助大模型自身较强的理解和推理能力,在使用时需在prompt中明确分类任务目标,并详细解释每个类目概念,尤其要突出类目间的差别。 结合in-context learning思想,有效的prompt应包含分类任务介绍及细节、类目概念解释、每个类目对应的例子和待分类文本。但实际应用中,类目和样本较多易导致prompt过长,影响大模型推理效果,因此可先通过向量检索缩小范围,再由大模型做最终决策。 具体方案为:离线时提前配置好每个类目的概念及对应样本;在线时先对给定query进行向量召回,再将召回结果交给大模型决策。 该方法不更新任何模型参数,直接使用开源模型参数。其架构参考GPT-RE并结合相关实践改写,加入上下文学习以提高准确度,还使用BGE作为向量模型,K-BERT提取文本关键词,拼接召回的相似例子作为上下文输入大模型。 代码实现上,大模型用Qwen2-7B-Instruct,Embedding采用bge-base-zh-v1.5,向量库选择milvus。分类主函数的作用是在向量库中召回相似案例,拼接prompt后输入大模型。 结果方面,使用ICL时accuracy达0.94,比bert文本分类的0.98低0.04,错误类别6个,处理时添加“家居”类别,影响不大;不使用ICL时accuracy为0.88,错误58项,可能未修改prompt有关。 优点是无需训练即可有较好结果,例子优质、类目界限清晰时效果更佳,适合围绕通用大模型api打造工具;缺点是上限不高,仅针对一个分类任务部署大模型不划算,推理速度慢,icl的token使用多,用收费api会有额外开销。 后续可优化的点是利用key-bert提取的关键词,因为核心词语有时比语意更重要。 参考资料包括
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值