利用Jensen不等式证明相对熵的非负性(P22314055梁辛宇)

 一.相对熵

1.相对熵的定义.

设  P(i) 和  Q(i) 是相对于同一信源的两个概率测度,则  P(i) 相对于Q(i)的相对熵定义为:

D_{KL}(P//Q)=\sum_{i}^{}P(i)log\frac{P(i)}{Q(i)}

\sum_{i}^{}P(i)=1\sum_{i}^{}Q(i)=1

也称作为交叉熵或者Kullback-Leibler距离。

2.相对熵的性质.

相对熵具有两个性质:非负性;当且仅当对所有i,P(i)=Q(i)时,相对熵为零。

二.Jensen不等式

1.基本定义

Jensen不等式(Jensen's Inequality) 是凸分析与概率论中描述凸函数(或凹函数)与期望关系的基本不等式,其核心思想是:函数的期望与期望的函数之间存在由函数凸性决定的大小关系

2.利用Jensen不等式证明相对熵的非负性


三.总结

1、我们接触了CSDN平台,学会如何在其中查找与筛选自己需要的信息,同时也学习到其他人的一些很好的想法和学习方法。

2、我们更加熟悉Jensen不等式的内容,尤其是在第一次证明后真正理解其含义,并能够熟练的运用,在以后学习中遇到需要运用该不等式的情况时更加得心应手。

3、加深相对熵相关内容的理解,尤其是通过自己动手证明对其非负性印象深刻。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值