感知机(perceptron)算法与模型
本文仅讨论两类的问题
参考文献:【感知机学习算法及其Python实现】,【基于sklearn的感知机python3】,【统计学习方法 第二版】
1. 前言
感知机(perception)是二类分类的线性模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值。感知机对应于输入空间(特征空间)中将实例划分为正负两类的分离超平面,属于判别模型,感知机学习旨在求出将训练数据进行线性划分的分离超平面,为此,导入基于误分类的损失函数,利用梯度下降法对损失函数进行极小化,求得感知机模型。感知机学习算法具有简单而易于实现的优点,分为原始形式和对偶形式。感知机预测是用学习得到的感知机模型对新的输入实例进行分类。
2. 感知机模型
假设输入空间(特征空间)是 χ ⊆ R n \chi \subseteq R^n