感知机(perceptron)算法与模型

本文详细介绍了感知机(perceptron)模型,包括其线性分类模型、学习策略和学习算法的原始形式,强调了误分类点的处理方式,并提到了基于digits数据集的感知机预测分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

感知机(perceptron)算法与模型

本文仅讨论两类的问题
参考文献:【感知机学习算法及其Python实现】【基于sklearn的感知机python3】,【统计学习方法 第二版】

1. 前言

感知机(perception)是二类分类的线性模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值。感知机对应于输入空间(特征空间)中将实例划分为正负两类的分离超平面,属于判别模型,感知机学习旨在求出将训练数据进行线性划分的分离超平面,为此,导入基于误分类的损失函数,利用梯度下降法对损失函数进行极小化,求得感知机模型。感知机学习算法具有简单而易于实现的优点,分为原始形式和对偶形式。感知机预测是用学习得到的感知机模型对新的输入实例进行分类。

2. 感知机模型

假设输入空间(特征空间)是 χ ⊆ R n \chi \subseteq R^n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeeGLMath

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值