图像轮廓检测初学
在图像处理领域中,轮廓检测是一项重要的任务,用于寻找并标定图像中的物体边缘。本文将介绍如何使用OpenCV库进行图像轮廓检测,并展示一个简单的示例代码。代码中的注释将详细解释每一步的操作。
1. 引言
图像轮廓检测是图像处理中的一项关键技术,可用于检测物体的形状、边界等信息。在本文中,我们将演示如何使用OpenCV进行图像轮廓检测,并通过示例代码展示这一过程。
2. 代码示例
以下是一个使用OpenCV的示例代码,演示了图像轮廓检测的过程:
import cv2
import numpy as np
# 读取图像
src_img = cv2.imread("demo.png") # 例如简单的5个英文验证码图片
# 将图像转换为灰度
img = cv2.cvtColor(src_img, cv2.COLOR_BGR2GRAY)
# 阈值化处理,生成二值图像
thresh, img = cv2.threshold(img, 190, 255, cv2.THRESH_BINARY) # 白底黑字
print("阈值1:", thresh)
thresh, img = cv2.threshold(</