计算绕原点旋转某角度后的点的坐标

本文详细介绍了如何通过两种方法计算二维平面上一点绕原点旋转指定角度后的坐标。第一种方法利用圆的参数方程结合角度变化进行推导;第二种方法则从坐标轴旋转的角度出发,通过点积运算得到新坐标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题:

A点(x, y)按顺时针旋转 theta 角度后点的坐标为A1点(x1,y1)  ,求x1 y1坐标用(x,y)和 theta 来表示

方法一:

设 OA 向量和x轴的角度为 alpha ,

那么顺时针转过 theta后 ,OA1 向量和x轴的角度为 (alpha - theta) 。

使用圆的参数方程来表示点坐标。A的坐标可以表示为:

 

{x=r⋅cosαy=r⋅sinα{x=r⋅cos⁡αy=r⋅sin⁡α

 

A1的坐标可以表示为(带入A点坐标进行化简)

 

{x1=r⋅cos(α−θ)=r⋅(cosαcosθ+sinαsinθ)=x⋅cosθ+y⋅sinθy1=r⋅sin(α−θ)=r⋅(sinαcosθ−cosαsinθ)=−x⋅sinθ+y⋅cosθ{x1=r⋅cos⁡(α−θ)=r⋅(cos⁡αcos⁡θ+sin⁡αsin⁡θ)=x⋅cos⁡θ+y⋅sin⁡θy1=r⋅sin⁡(α−θ)=r⋅(sin⁡αcos⁡θ−cos⁡αsin⁡θ)=−x⋅sin⁡θ+y⋅cos⁡θ

写成矩阵形式:

 

(cosθ−sinθsinθcosθ)(xy)=(x1y1)(cos⁡θsin⁡θ−sin⁡θcos⁡θ)(xy)=(x1y1)

 

 

方法二:

点顺时针转,相当于 点不变,让坐标轴逆指针转。

 

坐标为(x,y),可以看成: 

x值是点表示的向量,与x正轴单位向量的点积。

y值是点表示的向量,与y正轴单位向量的点积。

即在x轴和y轴上,带方向的投影长度。

 

所以问题等价的转化为: 坐标轴逆时针转了theta,求点在新的坐标系下的坐标。

 

新的坐标系的x正轴单位向量为(用原来的坐标系来表示)

 

(cosθ,sinθ)(cos⁡θ,sin⁡θ)

 

新的坐标系的y正轴单位向量为

 

(−sinθ,cosθ)(−sin⁡θ,cos⁡θ)

 

 

所以

A点新的坐标系下的x值 x1= 点积(A点坐标,新坐标系x正轴单位向量)

A点新的坐标系下的y值 y1= 点积(A点坐标,新坐标系y正轴单位向量)

 

{x1=x⋅cosθ+y⋅sinθy1=−x⋅sinθ+y⋅cosθ{x1=x⋅cos⁡θ+y⋅sin⁡θy1=−x⋅sin⁡θ+y⋅cos⁡θ

 

(cosθ−sinθsinθcosθ)(xy)=(x1y1)(cos⁡θsin⁡θ−sin⁡θcos⁡θ)(xy)=(x1y1)

 

 

总结:

顺时针旋转矩阵为:

 

(cosθ−sinθsinθcosθ)(cos⁡θsin⁡θ−sin⁡θcos⁡θ)

 

 

逆时针旋转矩阵为:(theta 变成 -theta带入即可)

 

(cosθsinθ−sinθcosθ)(cos⁡θ−sin⁡θsin⁡θcos⁡θ)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值