目录
解释一下什么是 Keyed State 和 Operator State。
什么是 Flink 的状态后端(State Backend)?
比较 MemoryStateBackend、FsStateBackend 和 RocksDBStateBackend 的区别
Flink 中的广播状态(Broadcast State)是如何使用的?
如何为 Flink 的 Keyed State 设置 TTL?
解释一下 Flink 的 Exactly-Once 语义是如何通过 Checkpoint 实现的。
Flink 的端到端(end-to-end)一致性是如何保证的?
解释一下 Flink 与 Kafka 的集成在状态管理中的作用。
在 Flink 中如何使用 RichMapFunction 管理状态?
在 Flink 的事件时间(event time)语义下,状态如何处理乱序事件?
在 Flink 的会话窗口(session window)中,状态如何管理?
什么是 Flink 中的状态(State)?
Flink 中的状态是指在 Flink 流处理程序中,操作符或函数用于存储和访问数据的机制。状态可以看作是在事件流处理过程中,随着时间推移而累积或变更的数据集合。在 Flink 的有状态流处理中,状态对于实现复杂的处理逻辑,如窗口操作、聚合计算、模式匹配等至关重要。状态使得 Flink 能够在分布式环境中保持计算的连续性和一致性,即使在出现故障时也能够通过状态的持久化和恢复来保证数据处理的正确性。
Flink 支持哪两种状态类型?
Flink 支持两种状态类型:Keyed State 和 Operator State。
-
Keyed State:当数据流被分区或分片后,每个分区上的数据会被分配一个唯一的键(Key)。Keyed State 是与特定键相关联的