大数据选型对比追命连环50问及参考答案

在面试时,考官很喜欢问选型的问题,考察面试者知识广度和深度。因为在实际企业开发项目,选型是很关键的一步,如果选错了,挖的坑可能要大量的时间去填了。特别是出现严重问题需要重新选择大数据组件,就意味着要推倒重来。。。而老板是不喜欢这种没产出的投入。

目录

详细说 Spark 和 Flink 的区别

详细说 Flink 和 Spark Streaming 处理数据的时候,分别怎么做?各自优势点是什么?

详细说为什么你觉得 Flink 比 Spark Streaming 好

详细说 Spark Streaming 相比 Flink 有什么优点

详细说 Flink 和 Spark 对于批处理的区别

详细说 Spark 为什么比 MapReduce 运行快?原因有哪些。

详细说 Spark 和 MapReduce 之间的区别?各自优缺点是什么。

详细说 Spark 相比 MapReduce 的优点。

详细说是不是用了 Spark 就不需要 Hadoop。

详细说 Spark Streaming 和 Storm 的区别。

Spark Shuffle 和 MapReduce Shuffle 的区别?说下各自的特点和过程。

详细说数据湖和数据仓库的区别。

详细说离线处理和实时处理的区别。

说说 Storm、Flink、Spark 的区别,各自的优缺点,适用场景是什么。

请解释 Kappa 架构与 Lambda 架构的区别。

在分布式系统中,数据一致性与可用性之间的权衡是什么?

对比 MongoDB 和 Cassandra,在数据一致性方面它们有何不同。

比较 Apache Kafka 与 RabbitMQ 作为消息队列的适用场景。

解释 Hive 和 Impala 的主要区别。

请比较 ElasticSearch 和 Solr 在搜索和分析方面的差异。

在选择大数据处理工具时,性能和可维护性之间如何权衡。

Tableau 和 Power BI 之间的主要差异是什么。

什么是 OLAP 和 OLTP?它们在大数据应用中的作用分别是什么。

请比较 Hadoop 2.x 和 Hadoop 3.x 的主要区别。

请比较 Sqoop、Flume 和 Kafka 在数据传输方面的特点和适用场景。

Apache Ranger 与 Apache Sentry 在 HDFS 权限管理上的比较。

在实时数据分析中,Apache Druid 与 Presto 的对比评估。

使用 Apache Pig 与 PySpark 进行 ETL 的对比。

Apache Nifi 与 Apache Kafka 在数据流管理上的角色对比。

比较机器学习框架(如 TensorFlow、PyTorch、Spark MLlib)在不同场景下的适用性。

在处理大规模数据时,为什么选择 Apache HBase 而不是传统的关系型数据库。

详细说 Hive 与 HBase 的区别。

详细说 Hive 与 HDFS 的关系与区别。

详细说 Spark 和 Hive 的区别。

详细说 Spark 和 Hive 的联系。

详细说 Spark 和 Hive 的联系。

数据存储层面

数据处理层面

生态系统层面

详细说 Hive 和传统数据库的区别。

数据存储和管理机制

数据处理和查询性能

数据类型和操作支持

应用场景和适用范围

详细说 Spark 和 Hive 对比,谁更好,你觉得为什么。

数据处理速度和性能

数据处理功能和灵活性

应用场景和适用范围

结论

详细说 MySQL 和 HBase 的对比。

数据模型和存储结构

数据存储和读写机制

数据一致性和事务处理

可扩展性和容错性

应用场景

详细说 Hadoop(HDFS)和 MySQL 的区别。

数据存储目的和功能

数据存储结构和模型

数据读写性能和特点

数据一致性和事务处理

应用场景和适用范围

详细说 HDFS 与 HBase 有什么关系。

数据存储基础

存储架构协同

数据访问和性能优化

可扩展性和容错性

详细说存储格式的选择,行式存储与列式存储的优劣。

行式存储

列式存储

详细说 Hive、HBase、HDFS 之间的关系。

Hive 与 HDFS 的关系

Hive 与 HBase 的关系

整体协同关系

详细说 Hive 中的数据存放在哪里,MySQL 的数据存放在哪里。

Hive 中的数据存放

MySQL 的数据存放


详细说 Spark 和 Flink 的区别

  • 架构模型
    • Spark 基于批处理的理念构建,虽然有 Spark Streaming 来处理流数据,但本质上是将流数据按时间间隔划分成小的批处理任务。其核心抽象是 RDD(弹性分布式数据集),RDD 是一个只读的、分区存储的数据集,通过一系列的转换操作(如 map、reduce、filter 等)构建数据处理流程。例如,在一个简单的单词计数程序中,首先从数据源读取数据生成 RDD,然后通过一系列转换操作来计算每个单词的出现次数。
    • Flink 是一个原生的流处理框架,它将批处理看作是流处理的一种特殊情况。其核心数据结构是流(Stream)和数据集(DataSet),流
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型大数据攻城狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值