【概念】椭球面在球面上的投影

本文详细介绍了在地图投影过程中,如何将地球椭球面通过等角投影公式映射到球面上的方法。讨论了在精度要求较高但又希望避免复杂计算的情况下,采用双重投影法的步骤。具体地,提出了一个椭球面到球面投影的幂级数近似解,并给出了保留更多项以提高精度的公式。这些公式对于中等比例尺地图的制作具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考

参考书目:

  1. 地图投影原理与方法》。
  2. 英文版的一本书《与大地测量和制图有关的纬度发展》,里面有P85页有下面提到的公式。

介绍

在推求地图投影方程时,通常有两种情况(参考书目第5章):

  1. 将地球椭球面直接投影到平面上。(某些计算比较困难)
  2. 忽略地球椭球体扁率,将地球视为半径为R的球体,将球面投影到平面上。(精度要求不高的时候使用)

但如果既对地图精度要求比较高时(如:中等比例尺横轴和斜轴地图投影),又不希望计算过于困难(如:在大、中比例尺地图上绘制位置线), 则常常①先将椭球面用某种条件投影到球面上,②再将球面投影到平面上,此法称为双重投影法。


本文重点介绍第一步:将地球椭球面用某种条件投影到球面上。

椭球面上的经纬度为: ( L , B ) (L,B) (L,B),(经度,纬度),投影到的球面的经纬度为 ( λ , φ ) (\lambda,\varphi) (λ,φ)

则地球椭球面在球面上的投影的一般公式为:
{ λ = L φ = f ( B ) \left\{ \begin{array}{c} \lambda=L \\ \varphi=f(B) \end{array}\right. {λ=Lφ=f(B)

其中,两者的经度是相同的,但纬度是需要变换的。需要找到变换公式 f f f

等角投影公式

参考书目1中的第62页,通过幂级数等各种变换,只提取了幂级数的前四项,得到一个近似解公式:

φ = B − ( 1 2 e 2 + 5 24 e 4 ) s i n 2 B + 5 48 e 4 s i n 4 B \varphi=B-(\frac{1}{2}e^2+\frac{5}{24}e^4)sin2B+\frac{5}{48}e^4sin4B φ=B(21e2+245e4)sin2B+485e4sin4B

其中:

  • e为椭球体的第一偏心率(非自然底数),常用椭球参数
  • φ 、 B \varphi、B φB的单位为弧度。

为了获得更高的精度,可以保留更多的级数项,比如《Voronoi tessellation on the ellipsoidal earth for vector data》中使用了该公式(并提供了反解,公式来源于参考书目2中的P85),并保留了更多项:

φ = B − ( e 2 / 2 + 5 e 4 / 24 + 3 e 6 / 32 + 281 e 8 / 5760 ) s i n 2 B \varphi=B-(e^2/2+5e^4/24+3e^6/32+281e^8/5760)sin2B φ=B(e2/2+5e4/24+3e6/32+281e8/5760)sin2B

+ ( 5 e 4 / 48 + 7 e 6 / 80 + 697 e 8 / 11520 ) s i n 4 B +(5e^4/48+7e^6/80+697e^8/11520)sin4B +(5e4/48+7e6/80+697e8/11520)sin4B

− ( 13 e 6 / 480 + 461 e 8 / 13440 ) s i n 6 B -(13e^6/480+461e^8/13440)sin6B (13e6/480+461e8/13440)sin6B

+ ( 1237 e 8 / 161280 ) s i n 8 B +(1237e^8/161280)sin8B +(1237e8/161280)sin8B

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值