参考
参考书目:
- 《地图投影原理与方法》。
- 英文版的一本书《与大地测量和制图有关的纬度发展》,里面有P85页有下面提到的公式。
介绍
在推求地图投影方程时,通常有两种情况(参考书目第5章):
- 将地球椭球面直接投影到平面上。(某些计算比较困难)
- 忽略地球椭球体扁率,将地球视为半径为R的球体,将球面投影到平面上。(精度要求不高的时候使用)
但如果既对地图精度要求比较高时(如:中等比例尺横轴和斜轴地图投影),又不希望计算过于困难(如:在大、中比例尺地图上绘制位置线), 则常常①先将椭球面用某种条件投影到球面上,②再将球面投影到平面上,此法称为双重投影法。
本文重点介绍第一步:将地球椭球面用某种条件投影到球面上。
椭球面上的经纬度为: ( L , B ) (L,B) (L,B),(经度,纬度),投影到的球面的经纬度为 ( λ , φ ) (\lambda,\varphi) (λ,φ)。
则地球椭球面在球面上的投影的一般公式为:
{
λ
=
L
φ
=
f
(
B
)
\left\{ \begin{array}{c} \lambda=L \\ \varphi=f(B) \end{array}\right.
{λ=Lφ=f(B)
其中,两者的经度是相同的,但纬度是需要变换的。需要找到变换公式 f f f。
等角投影公式
参考书目1中的第62页,通过幂级数等各种变换,只提取了幂级数的前四项,得到一个近似解公式:
φ = B − ( 1 2 e 2 + 5 24 e 4 ) s i n 2 B + 5 48 e 4 s i n 4 B \varphi=B-(\frac{1}{2}e^2+\frac{5}{24}e^4)sin2B+\frac{5}{48}e^4sin4B φ=B−(21e2+245e4)sin2B+485e4sin4B
其中:
- e为椭球体的第一偏心率(非自然底数),常用椭球参数。
- φ 、 B \varphi、B φ、B的单位为弧度。
为了获得更高的精度,可以保留更多的级数项,比如《Voronoi tessellation on the ellipsoidal earth for vector data》中使用了该公式(并提供了反解,公式来源于参考书目2中的P85),并保留了更多项:
φ = B − ( e 2 / 2 + 5 e 4 / 24 + 3 e 6 / 32 + 281 e 8 / 5760 ) s i n 2 B \varphi=B-(e^2/2+5e^4/24+3e^6/32+281e^8/5760)sin2B φ=B−(e2/2+5e4/24+3e6/32+281e8/5760)sin2B
+ ( 5 e 4 / 48 + 7 e 6 / 80 + 697 e 8 / 11520 ) s i n 4 B +(5e^4/48+7e^6/80+697e^8/11520)sin4B +(5e4/48+7e6/80+697e8/11520)sin4B
− ( 13 e 6 / 480 + 461 e 8 / 13440 ) s i n 6 B -(13e^6/480+461e^8/13440)sin6B −(13e6/480+461e8/13440)sin6B
+ ( 1237 e 8 / 161280 ) s i n 8 B +(1237e^8/161280)sin8B +(1237e8/161280)sin8B