如何为Runnable添加默认调用参数

在LangChain中处理复杂的运行逻辑时,能够预先绑定一些常量参数到一个Runnable可以为我们减少冗余代码并提高可维护性。本指南将介绍如何使用Runnable.bind()方法来提前设置这些参数,使得在一个RunnableSequence中调用时,既不需要依赖于前一个Runnable的输出,也不需要使用者提供。

技术背景介绍

本指南假定您已熟悉以下概念:

  • LangChain表达式语言(LCEL)
  • Runnables的链式调用
  • 工具调用

LangChain是一个支持可配置步骤和工具调用的强大框架,为顺序执行和复杂业务逻辑提供了支持。

核心原理解析

当我们需要在RunnableSequence中调用一个Runnable并使用一些固定的参数时,可以使用bind()方法提前绑定这些参数。这些绑定的参数在调用链中不依赖于用户输入或其他Runnable的输出。

代码实现演示

设置停止序列示例

假设我们有一个简单的提示模型链:

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI

# 设置提示模板
prompt = ChatPromptTemplate.from_messages(
    [
        (
            "system",
            "Write out the following equation using algebraic symbols then solve it. Use the format\n\nEQUATION:...\nSOLUTION:...\n\n",
        ),
        ("human", "{equation_statement}"),
    ]
)

# 创建模型实例
model = ChatOpenAI(temperature=0)

# 创建Runnable链
runnable = (
    {"equation_statement": RunnablePassthrough()} | prompt | model | StrOutputParser()
)

# 调用Runnable
print(runnable.invoke("x raised to the third plus seven equals 12"))

在某些场景下,我们可能希望通过bind()方法来缩短输出,比如设置停止序列:

runnable = (
    {"equation_statement": RunnablePassthrough()}
    | prompt
    | model.bind(stop="SOLUTION")  # 绑定停止序列以缩短输出
    | StrOutputParser()
)

print(runnable.invoke("x raised to the third plus seven equals 12"))
工具绑定示例

另外一个常见的用例是工具调用。虽然通常使用bind_tools()方法进行工具调用,但您可以直接绑定特定提供者的参数来获得更低层的控制:

tools = [
    {
        "type": "function",
        "function": {
            "name": "get_current_weather",
            "description": "Get the current weather in a given location",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "The city and state, e.g. San Francisco, CA",
                    },
                    "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
                },
                "required": ["location"],
            },
        },
    }
]

# 绑定工具到模型实例
model = ChatOpenAI(model="gpt-3.5-turbo-1106").bind(tools=tools)
model.invoke("What's the weather in SF, NYC and LA?")

应用场景分析

这种参数绑定方法在多种场合下都非常有效,例如在对话模型中需要固定的结束条件,或者在工具调用中需要一致的参数格式。

实践建议

  • 利用bind()方法可以减少重复配置,提高代码的可读性和可维护性。
  • 在复杂的步骤链中使用参数绑定,可以简化输入并保持一定的灵活性。

如果遇到问题欢迎在评论区交流。

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值