Postgres Embedding是一种开源解决方案,利用Hierarchical Navigable Small Worlds (HNSW)算法为Postgres数据库提供向量相似性搜索支持。该解决方案能够执行精准和近似的邻居搜索,特别是基于L2距离的搜索能力。今天,我们将深入探讨如何在Postgres中使用PGEmbedding进行向量搜索,并提供可运行的代码示例。
技术背景介绍
在处理复杂数据集时,向量搜索是一种关键的技术手段。传统数据库通常不擅长处理向量数据,而PGEmbedding通过引入HNSW算法使得Postgres能够高效处理向量相似性搜索。HNSW是一种基于图的搜索算法,适用于大规模的向量数据集。
核心原理解析
PGEmbedding利用Postgres的扩展功能,引入HNSW近似最近邻搜索算法。此算法通过构建一个导航小世界图,从而在大规模数据集中快速找到与查询向量相似的向量。
代码实现演示
下面,我们将演示如何使用PGEmbedding进行向量搜索。首先,我们需要安装必要的Python包,并将OpenAI API密钥和数据库URL保存到环境变量中:
# 安装所需的Python包
%pip install --upgrade --quiet langchain-openai langchain-community psycopg2-binary tiktoken
# 加载环境变量
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
os.environ["DATABASE_URL"] = getpass.getpass("Database Url:")
# 导入所需模块
from typing import List, Tuple
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import PGEmbedding
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
# 加载文档并进行文本拆分
loader = TextLoader("state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
# 创建OpenAI嵌入对象
embeddings = OpenAIEmbeddings()
connection_string = os.environ.get("DATABASE_URL")
collection_name = "state_of_the_union"
# 使用从文档中创建PGEmbedding实例
db = PGEmbedding.from_documents(
embedding=embeddings,
documents=docs,
collection_name=collection_name,
connection_string=connection_string,
)
# 执行相似性搜索
query = "What did the president say about Ketanji Brown Jackson"
docs_with_score: List[Tuple[Document, float]] = db.similarity_search_with_score(query)
# 输出搜索结果
for doc, score in docs_with_score:
print("-" * 80)
print("Score: ", score)
print(doc.page_content)
print("-" * 80)
应用场景分析
PGEmbedding适用于需要高效执行向量相似性搜索的应用场景,例如推荐系统、图像检索和自然语言处理。通过创建HNSW索引,可以显著提升搜索速度,对于大规模数据集尤为重要。
实践建议
- 配置HNSW索引:在大规模数据集上创建HNSW索引可以大幅提高搜索效率。
- 调整参数:根据数据集规模和维度,合理设置
maxelements
、dims
等参数。 - 环境整合:确保API密钥和数据库URL正确配置,避免连接问题。
存储与检索
创建HNSW索引以便更快地检索数据,示例如下:
PGEmbedding.create_hnsw_index(
max_elements=10000, dims=1536, m=8, ef_construction=16, ef_search=16
)
如果遇到问题欢迎在评论区交流。
—END—