在现代数据分析和机器学习领域中,处理大规模的多维数组数据是常见的需求。TileDB是一个强大的引擎,专注于对密集和稀疏多维数组进行索引和查询。它尤其适用于向量数据库应用,提供了快速的近似最近邻(ANN)搜索能力,通过TileDB-Vector-Search模块实现。该模块支持无服务器执行ANN查询以及在本地磁盘和云对象存储(如AWS S3)中存储向量索引。
在这篇文章中,我们将使用TileDB搭建一个简化的向量数据库示例,展示如何利用其功能进行高效的相似度搜索。
核心原理解析
TileDB通过将数据存储为向量并执行索引来优化搜索效率。它允许使用不同的索引类型,如FLAT、IVF等,并提供支持使用预训练模型嵌入向量的能力。这使得在处理文本或图像数据时,可以快速执行相似度搜索。
代码实现演示
下面我们将展示一个使用TileDB进行文本相似度搜索的完整示例代码。
首先,我们需要安装相关的Python库:
%pip install --upgrade --quiet tiledb-vector-search langchain-community
接下来,我们编写代码来加载文档,创建索引,并执行查询:
# 导入必要的库
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import TileDB
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_text_splitters import CharacterTextSplitter
# 配置文档加载器和文本拆分器
raw_documents = TextLoader("state_of_the_union.txt").load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = text_splitter.split_documents(raw_documents)
# 使用预训练模型来获取嵌入向量
embeddings = HuggingFaceEmbeddings()
# 创建TileDB实例并从文档中创建索引
db = TileDB.from_documents(
documents, embeddings, index_uri="/tmp/tiledb_index", index_type="FLAT"
)
# 执行相似度搜索
query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query)
print(docs[0].page_content)
# 使用向量进行相似度搜索
embedding_vector = embeddings.embed_query(query)
docs = db.similarity_search_by_vector(embedding_vector)
print(docs[0].page_content)
# 进行相似度评分搜索
docs_and_scores = db.similarity_search_with_score(query)
print(docs_and_scores[0])
# 使用最大边际相关性搜索(MMR)
retriever = db.as_retriever(search_type="mmr")
retriever.invoke(query)
# 或直接使用最大边际相关性搜索
db.max_marginal_relevance_search(query, k=2, fetch_k=10)
应用场景分析
TileDB的强大性能使其适合用于社交数据分析、推荐系统、自然语言处理等场景。在这些场景中,可以通过向量搜索快速找到与查询较为相似的项,从而提高数据检索的效率。
实践建议
对于初次使用TileDB的开发者,建议充分理解自己的数据模式并选择合适的索引类型以优化性能。同时,应根据存储需求选择合适的存储介质。本地存储适合快速原型设计,而云存储适合生产环境的大规模部署。
如果遇到问题欢迎在评论区交流。
—END—