作为一个数据分析师使用ChatGPT的心得

本文分享了数据分析师如何利用ChatGPT进行数据处理和机器学习模型构建的经验。通过实例,展示了ChatGPT在编写数据合并脚本和构建随机森林模型方面的效率,同时也指出其在理解和上下文连续性方面存在的不足,强调了经验和逻辑在AI辅助分析中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近一直在研究chatgpt在数据分析领用的实际使用,有几个比较具体的实际案例是我在处理工作中遇到的,给大家分享一下。
一个是在商业领域,经常性的需要写日报周报月报,但到了3月底 还需要一个季度报,而季度报的数据处理是比较多的,因此,我用chatgpt 帮我写了很多个脚本。
在这里插入图片描述
可以看到的是它理解错了

在这里插入图片描述
虽然是很基础的数据合并脚本,但是它能在30秒内给我正确的答案,如果是我自己写,或许需要3-5分钟。

然后我让它帮忙写一个随机森林算法,用于用户分析,并做roc,auc和混淆矩阵的分析。
在这里插入图片描述

# 读取用户数据集
df = pd.read_csv('user_data.csv')

# 将数据集中的标签(是否复购)转换为二元分类
df['repurchase'] = np.where(df['repurchase'] == 1, 1, 0)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(df.drop('repurchase', axis=1), df['repurchase'], test_size=0.2, random_state=42)

# 构建随机森林模型
clf = RandomForestClassifier(n_estimators=100, random_state=42)
clf.fit
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值