目标检测网络---yolov3(一)

本文介绍了YOLOv3的目标检测原理及其在网络结构、输入输出方面的特点。深入探讨了从锚框(anchor)到预测框的坐标变换过程,并分析了YOLOv3相较于前代版本的改进之处。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前两篇博文介绍了两阶段检测网络中的经典算法RCNN系列综述RCNN优化策略,这篇博文介绍单阶段检测网络中的经典算法yolov3。

说明

这篇博文是学习了百度飞桨目标检测7日打卡训练营后写的笔记,百度飞桨学习链接:https://aistudio.baidu.com/aistudio/education/group/info/1617

yolo发展历程

在这里插入图片描述

You Only Look Once

在这里插入图片描述

问题

1.为什么只用看一次就能解决目标检测问题?
2.什么是anchor,为什么要使用anchor?
3.如何从anchor到预测框?
4.从anchor到预测框的坐标变换,中心点坐标与宽度和高度的变换方式为何不同?

yolov1&yolov2

为了说明只用看一次就可以解决目标检测问题,得从yolov1和yolov2说起
yolov1详细介绍
https://blog.csdn.net/u014380165/article/details/72616238
在这里插入图片描述
在这里插入图片描述

yolov2详细介绍
https://blog.csdn.net/u014380165/article/details/77961414
在这里插入图片描述

anchor

anchor(锚框)是预测框的初始值,通过网络训练,对其进行微调,得到最终的预测框。
在这里插入图片描述

在这里插入图片描述

yolov3

yolov3网络结构
在这里插入图片描述
yolov3输入输出
在这里插入图片描述

从anchor到预测框
在这里插入图片描述
在这里插入图片描述
坐标变换
anchor的初始中心点坐标为网格的左上角坐标,通过对回归坐标中心点进行偏移,宽高进行缩放,得到最终的预测框。
在这里插入图片描述
因为每个anchor的中心点偏移范围是一个网格,古中心点偏移范围为(0,1),sigmoid正好具备这个特性;anchor的缩放倍数应该是正值,故选择exp函数对其进行变换。
在这里插入图片描述
yolov3优缺点
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值