【算法】最大上升公共子序列(动态规划)

文章讲述了小沐沐让奶牛研究的编程问题——给定两个递增数列,找到最长公共上升子序列的长度。通过举例和代码实现展示了如何通过动态规划求解这个问题,涉及到了ACWing题库中的一个经典算法题目。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

熊大妈的奶牛在小沐沐的熏陶下开始研究信息题目。

小沐沐先让奶牛研究了最长上升子序列,再让他们研究了最长公共子序列,现在又让他们研究最长公共上升子序列了。

小沐沐说,对于两个数列 A 和 B,如果它们都包含一段位置不一定连续的数,且数值是严格递增的,那么称这一段数是两个数列的公共上升子序列,而所有的公共上升子序列中最长的就是最长公共上升子序列了。

奶牛半懂不懂,小沐沐要你来告诉奶牛什么是最长公共上升子序列。

不过,只要告诉奶牛它的长度就可以了。

数列 A 和 B 的长度均不超过 3000。

输入格式

第一行包含一个整数 N,表示数列 A,B 的长度。

第二行包含 N 个整数,表示数列 A。

第三行包含 N 个整数,表示数列 B。

输出格式

输出一个整数,表示最长公共上升子序列的长度。

数据范围

1≤N≤3000,序列中的数字均不超过 2^31 - 1。

输入样例:

4
2 2 1 3
2 1 2 3

输出样例:

2

思路

举例如下表: 

样例 

序列1:12543867
序列2:21354786

f[][]数组状态 

i \ j012345678
0000000000
1001000000
2011000000
3011020000
4011022000
5011222000
6011222030
7011222033
8011222333

外层循环:依次遍历序列1的每个数据,设为 x

内层循环:依次遍历序列2的每个数据,设为 y

先更新f[i][j] = f[i - 1][j];

若x > y 则更新maxv的值,maxv  = max(maxv,f[i - 1][j] + 1);

若x == y则更新f[i][j]的值f[i][j] = max(f[i][j], maxv);

代码

#include <iostream>

using namespace std;

const int N = 3010;

int n;
int a[N], b[N];
int f[N][N];

int main()
{
    cin >> n;
    for (int i = 1; i <= n; i ++ ) cin >> a[i];
    for (int i = 1; i <= n; i ++ ) cin >> b[i];

    for (int i = 1; i <= n; i ++ )
    {
        int maxv = 1;
        for (int j = 1; j <= n; j ++ )
        {
            f[i][j] = f[i - 1][j];
            if (a[i] == b[j]) f[i][j] = max(f[i][j], maxv);

            if (b[j] < a[i])
                maxv = max(maxv, f[i - 1][j] + 1);
        }
    }

    int res = 0;
    for (int i = 1; i <= n; i ++ ) res = max(res, f[n][i]);
    cout << res << endl;
    return 0;
}

题目来自:272. 最长公共上升子序列 - AcWing题库

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只大黄猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值